Total and partial oxidation of C1-4 alkanes in the high and medium temperature range

C2H4C2H2CH4
Evaluated by comparison experiments and simulation related to ignition delay times, flame velocities, and concentration profiles of species for a wide range of conditions.
Reaction type
gas-phase
Version
1.0 (Spring 2005)
Reference
R. Quiceno, O. Deutschmann, J. Warnatz, European Combustion Meeting 2005. Louvain-la-Neuve, 3-6 April 2005, Belgian Section of the Combustion Institute paper, Chemical kinetics section, paper 29

Files

MECHANISM C1-4 Gas phase chemistry, Combustion, Partial oxidation
***********************************************************************
****                                                                  *
****     Gas phase reaction mechanism for combutsion and              *
****     partial oxidation of C1-C4 alkanes                           *
****                                                                  *
****                                                                  *
****     Version 1.0   December 2003                                  *
****                                                                  *         
****     Raul Quiceno, J�rgen Warnatz, Olaf Deutschmann               *
****     IWR, Heidelberg University, Germany                          *
****     Contact: [email protected] (O. Deutschmann)                   *
****                                                                  *
****     References:                                                  *
****     R. Quiceno, PhD thesis, University of Heidelberg             *
****     R. Quiceno, O. Deutschmann, J. Warnatz,                      *
****      European Combustion Meeting 2005. Louvain-la-Neuve,         *
****      3-6 April 2005, Belgian Section of the Combustion           *
****      Institute paper, Chemical kinetics section, paper 29        *
****     www.detchem.com/mechanisms                                   *
****                                                                  *
****                                                                  *
****     Kinetic data format: DETCHEM                                 *
****      k = A * T**b * exp (-Ea/RT)         A          b       Ea   *
****                                       (cm,mol,s)    -     kJ/mol *
****                                                                  *
****      + some reactions in TROE nomenclature                       *
****                                                                  *
****      see manuals on www.detchem.com for details                  *
****                                                                  *
****      The kinetic data of the backward reactions of               *
****      reactions are calculated                                    *
****      from thermodynamics (k_b = k_f /K)                          *
****                                                                  *
****                                                                  *
****     DETCHEM format                                               *
****                                                                  *
***********************************************************************
*********************************************************************
****Low Temperature Mechanism:
****Low temperature mechanism C1-C4 generiert von M.Nehse fuer O.Deutschmann.
****Generierten Spezies. Source: Minetti1995
****Neccessary for low temperature mechanisms of higher HC complete low T mech of higher HC = C1-C4 high temp base
****mechanism + Low temperature mechanism C1-C4 (mc4low)+ automatic generated low temp mech for higher HC.
****THESE 3 PARTS MUST BE CONCATENATED for a COMPLETE LOW TEMP MECHANISM !!!
****Oxygenates comes from second addition, and isomerization reactions
****
****High temperature Mechanism:
****VK Updated version of the C4-mechanism of Ch. Chevalier (1993).
****VK Checked with respect to free flame velocities, ignition delay times and
****VK profiles of concentrations of burner stabilized flames of various fuels.
**** COMMENTS IN THE MECHANISM ALWAYS REFER TO THE NEXT FOLLOWING REACT.
**** WITH C2H2 + O2 ---> HCCO + OH MILLER  82
**** WITH C2H3 + H  ---> C2H2 + H2  DLOG K = + 0.0
**** WITH C2H3 + OH ---> C2H2 + H2O 100% ESTIMATED!!!
**** DECOMP C2H3 FROM K0/KINF CEE /3
**** WITH C2H2 + C2H ---> C4H2
**** WITH C2H2 + H   ---> C2H + H2 WA 1984
**** WITH CH2 + CH2  ---> C2H2+ H2 MILLER 1982
**** WITH CH2 + HCCO ---> C2H3+ CO MILLER 1982
**** CONSUMPTION OF CH3CHO CORRECTED
**** VALUES C3 FROM WESTBROOK - DRYER 1984
**** DECOMP. CH3CHO WITH M* (LOW P, BIMOLEC. REACTION)
**** CH3CHO + OH ---> CH3CO + H2O WITH NEGATIVE ACT ENERGY (COR.)
**** CO + OH --> CO2 + H 6.0 E 06...
**** CH3 + OH --> CH3O + H   VALUE SLOANE 1989: 4.52E+14/0/64.8
**** AND VALUE REVERSE REACTION SLOANE 1989: 4.75E+16/-0.13/88
**** 1CH2 + O2 --> ONLY CO + H + OH
**** 1CH2 + H2 --> CH3 +H WITH REVERSE REACTION
**** CH2OH + M --> CH2O + H + M : 5 EXP13...
**** CH3O + M  --> CH2O + H + M : VALUE OF DECOMP. OF CH2OH
**** CH3OH --> 100% CH2OH
****VK CH3 + OH --> 1CH2 + OH value of Dobe, Berces, Marta:
****VK 26th Symp.(Int.) Comb. Institute (1996) work in progress poster
****VK CH3 + M --> CH + H2 + M Markus(1992) added
****VK 1CH2 + CH3 --> C2H4 + H  Markus(1992) added
****VK C2H2 + O -->  1) 3CH2 + CO CEC94 2.168E+06/2.1/6.57
****VK          -->  2) HCCO + H  CEC94 5.059E+06/2.1/6.57
****VK ( branching ratio 1) / 2) = 0.3 / 0.7) recommended by CEC1994
****VK C2H3 + O2 ---> Prod. overall rate CEC1994 with 2 reaction pathways:
****VK C2H3 + O2 ---> CH2O + CHO
****VK C2H3 + O2 ---> CH2CHO + O
****VK C formation reactions added:
****VK CH + H --> C + H2 Thorne (1986)
****VK C + O2 --> CO + O   Thorne (1986)
----
---- PART ONE: MECHANISM HIGT TEMPERATURE
******************************************                                      
****     01.   H2-O2 React. (no HO2, H2O2)                                      
******************************************                                      
---- (OLD: OK CEC 91 O2+H=OH+O  /2.000E+14/0.0/70.300)
---- CEC 94, (9.756E+13/0/62.10) (300-5000 K, dlog k= +-0.1 rising to +-0.5)
---- k_r, CEC 94, k=(1.2E+13/0/-0.931), (220-500K, dlog k= +-0.2)
----              k=(1.445+13/0/2.935), (1000-2000K, dlog k= +-0.1)
O2      +H       =OH      +O                  9.756E+13  0.0      62.100
---- O2      +H       =OH      +O                  2.000E+14  0.0      70.300
---- Baulch,D.L.; Cobos,C.J.; Cox,R.A.; Esser,C.; Frank,P.; Just,Th.; Kerr,J.A.; Pilling,M.J.; Troe,J.; Walker, R.W.; Warnatz,J
---- 1992.  Uncertainty=1.26   
---- OH      +O       =O2      +H                  1.445E+13  0.0       2.935
----
---- Yuan, T.; Wang, C.; Yu, C.-L.; Frenklach, M. Determination of the rate coefficient for the reaction H+O2->OH+O by a
---- shock tube/laser absorption/detailed modeling study.J. Phys. Chem. vol.95. p.1258. 1991. (1050-2700K)(1.39-2.73Bar)
---- Uncertainly=1.12, Measure!!!kcin=(1.614E+17/-0.93/70.590)   
---- O2      +H       =OH      +O                  1.807E+17 -0.93     70.590 
---- 
---- Germann, T.C.; Miller, W.H. Quantum mechanical pressure-dependent reaction and recombination rates for O+OH->H+O2,HO2  
---- J. Phys. Chem. A vol.101. p.6358-6367. 1997. (500-2000K) Demasiado rapida para ignition.   
---- OH      +O       =O2      +H                  5.119E+11 0.39       2.809
----
---- Klimo, V.; Bittererova, M.; Biskupic, S.; Urban, J.; Micov, M. Temperature dependences in the O+OH->O2+H reaction.
---- Quasiclassical trajectory calculation.  Collect. Czech. Chem. Commun. vol58. p234-243. 1993.   
---- OH      +O       =O2      +H                  9.069E+14-0.58       2.153    
---- 
---- 2003
---- kcin=(5.2038E+15/-0.458/70.08)
---- (+,-) 0.1 = (1.26)
---- O2      +H       =OH      +O                  4.204E+15 -0.458    70.080
----
---- CEC 94 (5.120E+04/2.67/26.27) (300-2500 K,dlogk = +-0.5 rising to +-0.2)
H2      +O       =OH      +H                  5.060E+04  2.670    26.300
----
---- 2003 = CEC 94
---- CEC 94 (1.000E+08/1.6/13.80) (300-2500 K,dlogk = +-0.1 rising to +-0.3)
---- k_r, CEC 94, k=(4.517+08/1.6/77.071), (300-2500, dlog k= +-0.2)
H2      +OH      =H2O     +H                  1.000E+08  1.600    13.800
----
---- Oldenborg, R.C.; Loge, G.W.; Harradine, D.M.; Winn, K.R. Kinetic study of the OH + H2 reaction from 800 to 1550 K
---- J. Phys. Chem. vol96. p8426-8430. 1992. (250-2580K) (0.27Bar)
---- kcin=(2.168E+08/1.52/14.467)
----                              +,- 0.1 at  250K
----                              +,- 0.3 at 2500K
---- H2      +OH      =H2O     +H                  2.168E+08  1.520    14.467
----
---- CEC 94 (1.506E+09/1.14/0.416) (250-2500 K, dlogk = +-0.2)
OH      +OH      =H2O     +O                  1.500E+09  1.140     0.420
---- Sutherland, J.W.; Patterson, P.M.; Klemm, R.B. Rate constants for the reaction, O(3P)+H2O=OH+OH, over the temperature range
---- 1053K to 2033K using two direct techniques. Symp. Int. Combust. Proc. vol23. p51-57 1991. (1290-2030K) Medido. Uncertainty=1.16 
---- H2O     +O       =OH      +OH                 5.553E+13    0.0     79.90 
---- 
******************************************                                      
****     02.   Recombination Reactions                                          
******************************************                                      
---- OK CEC 91 (GIVEN HERE FOR H2)                                              
H       +H       +M(1)    =H2      +M(1)      1.800E+18 -1.000     0.000        
---- OK ULI 88, WA 84, NO RECOM. CEC.                                           
O       +O       +M(1)    =O2      +M(1)      2.900E+17 -1.000     0.0          
---- OK CEC 94 (GIVEN FOR H2),MEASURED FOR H2O, AR, N2,(300-3000 K, dlogk=+-0.5)
----        (MEASURED FOR H2O, GIVEN HERE FOR H2) (2.176E+22/-2.0/0.0)
----        (MEASURED FOR AR, GIVEN HERE FOR H2)  (2.383E+22/-2.0/0.0)
----        (MEASURED FOR N2, GIVEN HERE FOR H2)  (5.531E+22/-2.0/0.0)
H       +OH      +M(2)    =H2O     +M(2)      5.530E+22 -2.000     0.000
******************************************                                      
****     03.   HO2 Formation/Consumption                                        
******************************************                                      
---- CEC 94 k=(2.103E+18/-0.8/0), (MEASURED FOR H2), (300-2000K, dlogk = +-0.5)
----        ALSO MEASURED FOR AR AND N2, (300-2000K, dlogk = +-0.5)
----        (MEASURED FOR AR, GIVEN HERE FOR H2) (1.761E+18/-0.8/0.0)
----        (MEASURED FOR N2, GIVEN HERE FOR H2) (3.536E+18/-0.8/0.0)
H       +O2      +M(3)    =HO2     +M(3)      2.100E+18 -0.800     0.0
---- CEC 94 (1.690E+14/0/3.66), (300-1000 K, dlogk = +-0.3)
HO2     +H       =OH      +OH                 1.500E+14  0.0       3.800
---- CEC 94 (4.280E+13/0/5.90), (300-1000 K, dlogk = +-0.3)
HO2     +H       =H2      +O2                 3.000E+13  0.0       4.000
---- OK CEC 94 (3.011E+13/0/7.20), (300-1000 K, dlog k = +-0.3)
HO2     +H       =H2O     +O                  3.000E+13  0.0       7.200
---- CEC 94 (3.19E+13/0/0), (300-1000 K, dlogk = +-0.3 rising to +-0.5)
HO2     +O       =OH      +O2                 2.000E+13  0.0       0.0
---- CEC 94, k=(2.89E+13/0/-2.08), (300-2000K, dlogk = +-0.2 rising to +-0.5)
HO2     +OH      =H2O     +O2                 6.000E+13  0.0       0.0
---- HO2     +OH      =H2O     +O2                 2.890E+13  0.0     -2.08  
******************************************                                      
****     04.   H2O2 Formation/Consumption                                       
******************************************                                      
---- CEC 94 (4.22E+14/0/50.14) (850-1250 K) OR
---- CEC 94 (4.22E+14/0/50.14+1.32E+11/0/-6.82) (550-1250 K, +-0.15 to +-0.4)
HO2     +HO2     =H2O2    +O2                 4.220E+14  0.0      50.140
**** BEGIN DUPLICATE REACTION
HO2     +HO2     =H2O2    +O2                 1.320E+11  0.0      -6.820
**** END DUPLICATE REACTION
---- CEC 94, k_inf=(7.23E13/-0.37/0.00), (200-1500K, dlog k=+-0.5)
----       k_0(N2)=(5.53E19/-0.76/0.00), (250-1400K, dlog k=+-0.4)
----     Fcent(N2)=(0.50)              , (200-1500K, dFc = +- 0.2)
OH      +OH      +M(1)    =H2O2    +M(1)      7.230E+13 -0.370     0.0
                                    LOW       5.530E+19 -0.760     0.0
                                    TROE   0.500     0.0     0.0     0.0
---- OK CEC 94 (1.686E+12/0/15.71), (300-1000 K, dlogk = +-0.3)
H2O2    +H       =H2      +HO2                1.700E+12  0.0      15.700
---- OK CEC 94 (1.024E+13/0/14.97) (300-1000 K , dlogk = +-0.3)
H2O2    +H       =H2O     +OH                 1.000E+13  0.0      15.000
---- CEC 94 (6.62E+11/0/16.63) (300-500 K, +-0.3)
---- 86 TSA/HAM (9.63E+06/2.0/16.629) (300-2500 K)
H2O2    +O       =OH      +HO2                9.630E+06  2.0      16.630
---- CEC 94 k=(7.82E+12/0/5.57), (300-1000 K, dlogk = +-0.2 rising to +-0.5)
H2O2    +OH      =H2O     +HO2                5.400E+12  0.0       4.200
******************************************                                      
****     05.   CO REACTIONS                                                     
******************************************                                      
---- GRI 2.11, k=(4.76E+07/1.23/0.29)
---- 76 BAU/DRY, k=(1.51E+07/1.3/-3.2), (250-2000K, dlog k = +-0.5)
---- 94 BAU/COB, k=(6.32E+06/1.5/-2.08), (300-2000K, dlog k = +-0.2 at 300K r.to +-0.5)
---- attention 94 BAU/COB evaluation is based on wrong flame velocity measurements
---- RAUL:SHINJI KOJIMA,CANDF:99:87-136,1994 k=(4.400E+06  1.500    -3.100)     4
---- RAUL:RAVISHANKARA 1983 [250K - 1040K] k=(5.480E+10  0.295    68.150)
---- 76 BAU/DRY are in better agreement to direct kinetic measurements
CO      +OH      =CO2     +H                  4.760E+07  1.230     0.290
---- 86 TSA/HAM (1.50E+14/0/98.94), (300-2500K)
CO      +HO2     =CO2     +OH                 1.500E+14  0.0      98.700
---- 
----  Volman, D.H Photochemistry of the gaseous hydrogen peroxide-carbonmonoxide system. IV. Survey of the
----  rate constant and reaction profile for the HO2 + CO ?rarrow? CO2 + OH reaction. Journal:Photochem. Photobiol 
----  p.1.00-3.00. vol100 1996.(250-800K)    
---- CO      +HO2     =CO2     +OH                 2.079E+14  0.5      95.61 
---- 
---- Vardanyan, I.A.; Sachyan, G.A.; Nalbandyan, A.B.The Rate Constant of the Reaction HO2 + CO = CO2 + OH
---- Int. J. Chem. Kinet. vol.7. p.23.00. 1975. Exp. (878-952K)(1.01Bar). (+/-) 2.999E+13 cm3/mol/s (+/-) 12.47 kJ/mol 
---- CO      +HO2     =CO2     +OH                 1.017E+14  0.0      96.44      
---- 
---- RAUL: SYMP NO REC CEC K=( 7.100E+13  0.0  -19.000)
---- 86 TSA/HAM, k(N2)=(6.170E+14/0/12.56), here given for H2
CO      +O       +M(1)    =CO2     +M(1)      1.540E+15  0.0      12.560
----  M( 5)
----  Third-body efficiencies:  [2]
----    N2               1.0
----    H2   Enhanced by 2.0
----    O2   Enhanced by 6.0
----    H2O  Enhanced by 6.0
----    CH4  Enhanced by 2.0
----    CO   Enhanced by 1.5
----    CO2  Enhanced by 3.5
----    C2H6 Enhanced by 3.0
----    AR   Enhanced by 0.5
---- Pressure dependence was added in GRI-Mech 3.0, using k(inf) from J. Troe, 15th Symp. (Int'l.) on Combustion, 9.667 (1974)
---- Warnatz, J. Rate coefficients in the C/H/O system. Combustion chemistry (ed. W.C.Gardiner,Jr.) Springer-Verlag, NY 1984, p.197.
----
---- k_o = 6.02E+14 exp(-3000 cal/mol /RT) cm^6/mol^2 s
----
---- k_inf = 1.80E+10 exp(-2385 cal/mol /RT) cm^3/mol s
----
---- 86 TSA/HAM (2.53E+12/0/199.54) (300-2500 K, delta = +-2)
CO      +O2      =CO2     +O                  2.500E+12  0.0     200.000
---- RAUL: SE ADICIONA:(SHINJI KOJIMA,CANDF:99:87-136,1994)
CO      +CH3O    =CO2     +CH3                1.580E+13  0.0      49.400
******************************************                                      
----                                                                            
----                                                                            
----                                                                            
******************************************                                      
****     10.   CH Reactions                                                     
******************************************                                      
---- OK CEC 94, k=(3.98E=13/0/0), (300-2000K ,dlog k = +-0.5)
CH      +O       =CO      +H                  4.000E+13  0.0       0.0
---- CEC 94, k=(3.312E+13/0/0), (300-2000K, dlog k= +-0.3 r. to +-0.5 at 2000K)
---- products:(CHO+O),(CO+OH),no branching ratio
CH      +O2      =CHO     +O                  3.000E+13  0.0       0.0
---- CEC 94, k=(3.43E+12/0/2.87), (300-1000K, dlog k = +-0.1)
CH      +CO2     =CHO     +CO                 3.400E+12  0.0       2.900
---- CEC 94, k=5.721E+12/0/-3.16), (300-1000K, dlog k = +-0.1)
CH      +H2O     =CH2O    +H                  4.560E+12  0.0        -3.200
CH      +H2O     =3CH2    +OH                 1.140E+12  0.0        -3.200
---- Miller,Bowman Prog. Energy Combust.Sci. 15,287, (1989)
CH      +OH      =CHO     +H                  3.000E+13  0.0       0.0
******************************************                                      
****     11.   CHO REACTIONS                                                    
******************************************                                      
---- OK WA 84 NO REC CEC k=(7.100E+14  0.0  70.300)
---- CEC 94, k=(4.474E14/0/65.93) meas. AR, here given for H2,
----         k_r=(5.492E+14/0/3.076) meas. AR, here given for H2
----         for k (600-2500K, dlogk = +-0.5); for k_r (300-2500K, dlogk = +-0.5)
CHO     +M(1)    =CO      +H       +M(1)      4.500E+14  0.0      66.000
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO     +H       =CO      +H2                 9.000E+13  0.0       0.0
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO     +O       =CO      +OH                 3.000E+13  0.0       0.0
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO     +O       =CO2     +H                  3.000E+13  0.0       0.0
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO     +OH      =CO      +H2O                1.000E+14  0.0       0.0
---- OK CEC 94 k_sum=(3.011E+12/0/0) (300-2500 K, dlogk=+-0.3),
---- (CO+HO2),(OH+CO2),(HCO3); (CO+HO2) main channel, (HCO3) not relevant
---- Total:CHO+O2 = CO+HO2  3.000E+12/0.0/0.0)
CHO     +O2      =CO      +HO2                2.400E+12  0.0       0.0
---- 
---- Hsu 1996 kcin=(1.548E+04/2.38/6.386)
---- Timonen kcin=(7.588E+12/0.0/3.119)   
---- Kinetics of the reactions of the formyl radical with oxygen, nitrogen dioxide, chlorine, and
---- bromine. J. Phys. Chem. vol.92. p.651. 1988.(295-713K) 0Bar.Experimental!!!  
---- CHO     +O2      =CO      +HO2                7.588E+12  0.0     3.119
---- 
---- Vandooren, J.; Oldenhove de Guertechin, L.; van Tiggelen, P.J. Kinetics in a lean formaldehyde flame
---- Combust. Flame.. vol64. p.127. 1986. (300-1600K) (0.03Bar) 
---- CHO     +O2      =CO      +HO2                2.697E+13  0.0     4.989
---- 
---- Veyret, B.; Lesclaux, R. Absolute Rate Constants for the Reactions of HCO with O2 and NO from 298 to 503 
---- J. Phys. Chem. vol85.p.1918. 1981. (298-503K) (0.06-0.67Bar). n=(-0.1 hasta -0.7) 
---- kcin= (3.390E+12/(T/298)^n/0.0)      
---- n= -0.1:
---- CHO     +O2      =CO2     +OH                 5.993E+12 -0.1       0.0
---- n= -0.7: 
---- CHO     +O2      =CO2     +OH                 1.828E+14 -0.7       0.0
---- 
---- NIST 2000 Nadtochenko S.A. Sarkisov. O.M. Vedenee O.V
---- Study of the reaction of CHO with Molecular Oxygen. Doklur Phy Chem (Engl. Transl)
---- vol.244 p.152 1979 (Relative rate measure (19% of:  CHO+O2 = CO+HO2)
CHO     +O2      =CO2     +OH                 0.600E+12  0.0       0.0
---- 
---- OK CEC 94 (300 K, dlogk = +-0.3)
CHO     +CHO     =CH2O    +CO                 3.000E+13  0.0       0.0
---- Tsang  1986
CHO     +HO2     =OH      +CO2     +H         3.000E+13  0.0       0.0
******************************************                                      
****     12.   CH2 Reactions                                                    
******************************************                                      
---- CEC 94, k=(6.022E+12/0/-7.48), (300-3000K, dlog k = +-0.7)
3CH2    +H       =CH      +H2                 6.000E+12  0.0      -7.500
---- OK CEC 89 k=(8.400E+12  0.0  0.0)
---- CEC 94, k=(1.204E+14/0/0),(300-2500K, dlog k=+-0.2 rising to +-0.7 at 2500K)
---- Products: (CO+H+H), (CO+H2); k1/k=0.6+-0.3 over whole range
3CH2    +O       >CO      +H       +H         7.600E+13  0.0       0.0
3CH2    +O       =CO      +H2                 4.400E+13  0.0       0.0
---- CEC 94, k=(1.204E+14/0/3.326),(300-3000K, dlog k = +-0.5)
---- products: (C2H2+H+H),(C2H2+H2), k2/k=0.9 =-0.1 over range 300-3000K
3CH2    +3CH2    =C2H2    +H2                 1.200E+13  0.0       3.4
3CH2    +3CH2    =C2H2    +H       +H         1.100E+14  0.0       3.4
---- CEC 94, k=(4.215E+13/0/0), (300-3000K, dlog k=+-0.3 r. to +-0.5 at 3000K)
3CH2    +CH3     =C2H4    +H                  4.200E+13  0.0       0.0
---- 2 NEXT REACT.: OK CEC 89. THESE ARE THE 2 FASTEST REACTIONS.
---- CEC 94, k=(2.469E+13/0/6.236),(300-1000K,dlog k= +-0.1 r. to +-0.5 at 1000K)
---- O2+CH2=>
----          CO2+H2      From Konnov:  6.900E+11 / 0.0 /  2.09
----          CO2+H+H     From Konnov:  1.600E+12 / 0.0 /  4.18
----          CO+OH+H     From Konnov:  8.600E+10 / 0.0 /  4.18
----          CO+H2O      From Konnov:  1.900E+10 / 0.0 / -4.18
----          CH2O+O      From Konnov:  5.000E+13 / 0.0 / 37.62
----
----          CO+OH+H     From GRI:  5.000E+12  / 0.0 / 6.27
----          CO2+H+H     From GRI:  5.800E+12  / 0.0 / 6.27
----          CH2O+O      From GRI:  2.400E+12  / 0.0 / 6.27
----
3CH2    +O2      =CO      +OH      +H         5.000E+12  0.0       6.270
3CH2    +O2      =CO2     +H2                 5.800E+12  0.0       6.270
3CH2    +O2      =CH2O    +O                  2.400E+12  0.0       6.270
----
---- 3CH2    +O2      =CO      +OH      +H         8.600E+10  0.0       4.180
---- 3CH2    +O2      =CO2     +H2                 6.900E+11  0.0       2.090
---- 3CH2    +O2      =CH2O    +O                  5.000E+13  0.0       37.62
---- 3CH2    +O2      =CO2     +H       +H         1.600E+12  0.0       4.180
---- 3CH2    +O2      =CO      +H2O                1.900E+10  0.0      -4.180
----
----(*) 3CH2    +O2      =CO      +OH      +H         1.300E+13  0.0       6.200
----(*) 3CH2    +O2      =CO2     +H2                 1.200E+13  0.0       6.200
----
---- CEC 94, scaled AR: k=(1.050E+13/0/0),(300-2000K, dlog k = +-0.3)
---- CEC 94, scaled N2: k=(1.510E+13/0/0),(300-2000K, dlog k = +-0.3)
---- only for H2, O2, H2O, CO, CO2, (N2 or AR)
1CH2    +M(1)    =3CH2    +M(1)               1.200E+13  0.0       0.0
---- CEC 94, k=(3.132E+13/0/0), (300-1000K, dlog k= +-0.3 r. to +-0.5 at 1000K)
---- procuts: ONLY THIS CHANNEL
1CH2    +O2      =CO      +OH      +H         3.100E+13  0.0       0.0
---- OK CEC.  WITH REVERSE REACTION THOUGH THE REV. ONE IS SO COMPETITIV
---- CEC 94, k_r=(6.02E+13/0/63.19), (300-2500K, dlog k= +-1.0)
CH3     +H       =1CH2    +H2                 6.000E+13  0.0      63.2
----
******************************************                                      
****     13.   CH2O Reactions                                                   
******************************************                                      
---- OK CEC 89 k=( 5.000E+16  0.0  320.000)
---- CEC 94, k=k1+k2=(4.646E+36/-5.54/404.58), (1700-3200, dlog k = +-0.3)
---- products: (CHO+H+M),(CO+H2+M), k2/k= 0.7 +-0.4, 2000-3000K
CH2O    +M(1)    =CHO     +H       +M(1)      1.400E+36 -5.54    404.580
CH2O    +M(1)    =H2      +CO      +M(1)      3.250E+36 -5.54    404.580
----
----
---- FROM GRI 3.0
----(*)H       +CHO     +M( 6)   =CH2O    +M( 6)     1.090E+12  0.48     1.770
----                                    LOW       2.470E+24 -2.57     1.080
----                                    TROE   0.782  271.0  2755.0  6570.0
----
---- k_o = 2.47E+24 T^(-2.57) exp(-425 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 1.09E+12 T^0.48 exp(260 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.782) exp(-T/271) + 0.782 exp(-T/2755) + exp(-6570/T)
----
----(*)CO      +H2      +M( 6)   =CH2O    +M( 6)     4.300E+07  1.5     332.728
----                                    LOW       5.070E+27 -3.42    352.580
----                                    TROE   0.932   197.0  1540.0 10300.0
----
---- k_o = 5.07E+27 T^(-3.42) exp(-84350 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 4.30E+07 T^1.5 exp(-79600 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.932) exp(-T/197) + 0.932 exp(-T/1540) + exp(-10300/T)
-----
---- OK CEC 91 k=(2.300E+10  1.05  13.700)
---- CEC 94 (1.265E+08/1.62/9.062) (300-1700 K, dlogk = +-0.1 rising to +-0.3)
CH2O    +H       =CHO     +H2                 1.270E+08  1.62      9.000
---- OK CEC 94 (250- 2000K, dlogk = +-0.1 rising to +-0.3)
CH2O    +O       =CHO     +OH                 4.150E+11  0.57     11.600
---- OK CEC 94 (3.43E+09/1.18/-1.87) (300-3000 K,dlogk = +-0.1 rising to +-0.7)
CH2O    +OH      =CHO     +H2O                3.400E+09  1.18     -1.870
---- OK CEC 94 (600-1000 K, dlogk = +-0.5)
CH2O    +HO2     =CHO     +H2O2               3.000E+12  0.0      54.7
---- OK WA 84 k=(1.000E+11  0.0  25.500)
---- CEC 89: 1.8 E12/0/30.0. NOT IMPORTAN
---- CEC 91: 4.1 E12/0/37.0
---- CEC 94: k=(7.83E-08/6.1/8.23), (300-2000K, dlog k = +-0.2)
CH2O    +CH3     =CHO     +CH4                7.830E-08  6.1       8.200
---- OK CEC 94 k=(6.020E+13/0/170.10), (700-1000 K, dlog k = +-0.5)
CH2O    +O2      =CHO     +HO2                6.000E+13  0.0     170.700
******************************************                                      
****     14.   CH3 REACTIONS                                                    
******************************************                                      
---- CEC 94, k=(1.0E+16/0/379.1), (1500-3000K, dlog k = +-0.5)
CH3     +M(1)    =3CH2    +H       +M(1)      1.000E+16  0.0     379.000
---- M. W. Markus, D. Woiki, P. Roth, Symp. (Int.) on Comb., 24, 581, (1992)
CH3     +M(1)    =CH      +H2      +M(1)      6.900E+14  0.0     345.03
---- CEC 94, k=(4.22E13/0.00/0.00), (300-3000K, dlog k + =-0.4), educt CH2
1CH2    +CH3     =C2H4    +H                  1.600E+13  0.00     -2.38
---- CEC 94, k=(8.43E+13/0/0), (300-2500K, dlog k = +-0.2)
CH3     +O       =CH2O    +H                  8.430E+13  0.0       0.0
---- CEC 94, k_inf=(2.40E16/0.00/439.01), (1000-3000K, dlog k=+-0.5)
----       k_0(AR)=(4.52E17/0.00/379.97), (1000-1700K, dlog k=+-0.3),1.29e+18
----     Fcent(N2)=(0.0/1350/1.0/7830)  , (1000-5000K, dFc = +- 0.1)
CH4     +M(4)    =CH3     +H       +M(4)      2.400E+16  0.000   439.00
                                    LOW       1.290E+18  0.000   379.97
                                    TROE   0.000  1350.0     1.0  7830.0
---- NEXT REACT: T.M. SLOANE CST 63, PP287-313 (1989). FORW. REAC. /2
CH3     +OH      >CH3O    +H                  2.260E+14  0.0      64.8
CH3O    +H       >CH3     +OH                 4.750E+16 -0.13     88.0
---- Deters, R., Otting, M., Temps, F., Wagner, H. Gg., Laszlo, B.
---- Dobe, S., Berces, T. and Marta, F.: work in progress poster 26th Symp.
---- (1996)
CH3     +OH      >1CH2    +H2O                2.300E+13  0.0       0.0
1CH2    +H2O     >CH3     +OH                 7.900E+13  0.0       0.0
---- 
---- CEC 94. (300-1000K)(Uncertainty=3.16)    
---- CH3     +OH      =1CH2    +H2O                7.227E+13  0.0     11.64  
---- Wilson, C.; Balint-Kurti, G.G. New pathway for the CH3+OH->CH2+H2O reaction on a triplet surface 
---- J. Phys. Chem. A:vol102. p 1625 - 1631. 1998.(200-2250K). Transition State Theory.
---- CH3     +OH      =1CH2    +H2O                1.110E+03  3.0     11.64
----
---- Oser, H.; Stothard, N.D.; Humpfer, R.; Grotheer, H.H.  Direct measurement of the reaction CH3 + OH at ambient temperature in the
---- pressure range 0.3-6.2 mbar.   J. Phys. Chem. vol96. p.5359-5363. 1992. 300K (0.00-0.01Bar)  
---- CH3     +OH      =1CH2    +H2O                1.110E+03  3.0     11.64
----- 
---- CEC 94, k1=(3.312E+11/0/37.41), (1000-2500K, dlog k= +-0.5)
---- products: (CH2O+OH),(CH3O+O),(CH3O2) see in the mechanism
---- this is the favoured route (original Volker)   
---- CH3     +O2      =CH2O    +OH                 1.700E+11  0.0      37.400
---- 
---- OK CEC 91: THIS IS THE FAVORED ROUTE
---- RAUL : MUUY Sensible a esta reaccion!!!, NO emplear CEC 94 ! 24Junio Pongo la segunda Borisov, pruebo solamnete!
CH3     +O2      =CH2O    +OH                 3.300E+11  0.0      37.400
---- Borisov, A.A.; Dragalova, E.V.; Zamanskii, V.M.; Lisyanskii, V.V.; Skachkov, G.I
---- Mechanism for the Combustion of Methane-Oxygen Mixtures in the Presence of Added N2O
---- Kinet. Catal. vol. 22. p.305. 1981.(880 - 1670 K) 1 Bar. k=(1.999E+12/0.0/54.45)    
---- CH3     +O2      =CH2O    +OH                 1.999E+12  0.0      54.450
---- 
---- CEC 2003
---- Yu, C.L.; Wang, C.; Frenklach, M. Chemical kinetics of methyl oxidation by molecular oxygen
---- J. Phys. Chem. vol 99. p.14377-14387, 1995. (1000-2500K) (1.45-2.53Bar) Experimental.
---- kcin=(2.228E+12/0.0/92.618) = Kmax !!!!
---- CH3     +O2      =CH2O    +OH                 2.228E+12  0.0      92.618
----
---- OK CEC 91
CH3     +HO2     =CH3O    +OH                 1.800E+13  0.0       0.0
---- CEC 94, k=(3.975E13/0/238.03),
----         (500-2500K, dlog k = =-0.5 at 500K rising to -=1.0 at 2000K)
---- CH4     +O2      =CH3     +HO2                3.900E+13  0.0     238.0
---- 
---- OK W. TSANG AND R.F. HAMPSON, J. PHYS CHEM REF DATA 15, 1087, (1986) 
CH3     +HO2     =CH4     +O2                 3.600E+12  0.0       0.0
---- 
---- OK WA 84 NO REC CEC   
---- CH3     +CH3     >C2H4    +H2                 1.000E+16  0.0     134.000
---- Hidaka, Y.; Nakamura, T.; Tanaka, H.; Inami, K.; Kawano, H. 
---- High temperature pyrolysis of methane in shock waves. Rates for dissociative recombination reactions of methyl
---- radicals and for propyne formation reaction. Int. J. Chem. Kinet.vol.22. p701. 1990. (1400-2200K)(2.33-3.75Bar)   
CH3     +CH3     =C2H4    +H2                 9.998E+13  0.0     133.860
---- 
---- KINF OK WA 84
---- CEC 94, k_inf=(3.61E13/0.0/0.00),   (300-2000K, dlog k=+-0.3)
----       k_0(AR)=(1.27E41/-7.0/11.56), (300-2000K, dlog k=+-0.3),3.63e41
----     Fcent(AR)=(0.62/73/1180/0)    , (300-2000K, dFc = +- 0.1)
CH3     +CH3     +M(1)    =C2H6    +M(1)      3.610E+13  0.000     0.00
                                    LOW       3.630E+41 -7.000    11.60
                                    TROE   0.620    73.0  1180.0     0.0
******************************************                                      
****     15a.   CH3O Reactions                                                  
******************************************                                      
---- OK WA 84 /2 VALUE STEADILY CHANGING.         
CH3O    +M(1)    =CH2O    +H       +M(1)      5.000E+13  0.0     105.0          
---- CEC 94, k=(1.8E+13/0/0), (300-1000K, dlog k = +-0.5)
CH3O    +H       =CH2O    +H2                 1.800E+13  0.0       0.0
---- CEC 94, k=(2.170E+10/0/7.3), (300-1000K,
----         dlog k= +-0.1 at 500K rising to +-0.3 ar 300K and 1000K)
CH3O    +O2      =CH2O    +HO2                3.000E+10  0.0       7.3
---- 22ND SYMP NO REC CEC                                                       
---- CH2O    +CH3O    >CH3OH   +CHO                0.600E+12  0.0      13.8          
---- CH3OH   +CHO     >CH2O    +CH3O               0.650E+10  0.0      57.2          
---- RAUL=Tsang 1986 k=(1E11/0.0/12.45) Valor del mecanismo de Konnov
---- Konnov
CH2O    +CH3O    =CH3OH   +CHO                1.150E+11  0.0       5.2
---- 
---- CEC 94, k=(1.506E+13/0/0),(300-1000K,
----         dlog k= +-0.3 rising to +-0.7 at 1000K)
---- products: (O2+CH3),(OH+CH2O); k2/k=(0.12+-0.1) at 300K
---- k_r1=(1.32E+14/0/131.36), (300-2500K, dlog k = +-0.5)
CH3O    +O       =OH      +CH2O               1.800E+12  0.0       0.0
---- CH3O    +O       >O2      +CH3                1.320E+13  0.0       0.0
---- CH3     +O2      >O       +CH3O               0.600E+14  0.0     131.0
----
---- Yu, C.L.; Wang, C.; Frenklach, M. Chemical kinetics of methyl oxidation by molecular oxygen
---- J. Phys. Chem. vol.99 p.14377-14387, 1995.(1550-2200K) (1.45-2.53Bar) Expe. Uncertaintly=1.48
---- kcin=(2.951E+13/0.0/127.211) (+,-) 5kJ mol
CH3     +O2      =O       +CH3O               4.041E+13  0.0     122.2
----
---- 2003
---- J.V. Michael, S.S. Kumaran and M.-C.Su, J. Physi. Chem. A. 103, 5942 (1999)
---- (0.3-0.6 Bar)
---- CH3     +O2      =O       +CH3O               2.108E+13  0.0     135.8
----
---- additional reactions
---- 86 TSA/HAM, k=(1.81E+13/0/0), (300-2500K, dlog k = +-0.7)
CH3O    +OH      =CH2O    +H2O                1.810E+13  0.0       0.0
******************************************                                      
****     15b.   CH2OH Reactions                                                 
******************************************                                      
---- OK WA 84 /2 NO REC. CEC.
---- 89HID/OKI2, k(Ar)=(4.40E15/0/125.6), (1372-1842K, dlog k = +-1.0)
CH2OH   +M(1)    =CH2O    +H       +M(1)      5.000E+13  0.0     105.0          
----
---- (*) GRI 3.0
---- H       +CH2O    +M( 6)   =CH2OH   +M( 6)     5.400E+11  0.450   15.048
----                                    LOW       1.270E+32 -4.820   27.295
----                                    TROE   0.719   103.0  1291.0   4160
----
----    k_o = 1.27E+32 T^(-4.82) exp(-6530 cal/mol /RT) cm^6/mol^2 s
----    k_inf = 5.40E+11 T^0.45 exp(-3600 cal/mol /RT) cm3/mol s
----    F_cent = (1-0.719) exp(-T/103) + 0.719 exp(-T/1291) + exp(-4160/T)
----
---- OK WA 84 NO REC CEC (1.8E13 FOR CH3O)                                      
CH2OH   +H       =CH2O    +H2                 3.000E+13  0.0       0.0          
---- OK WA 84 NO REC. CEC                                                       
---- CH2OH   +O2      =CH2O    +HO2                1.000E+13  0.0      30.0          
---- CEC 94, (300-1200K, dlog k= +-0.1 at 300K rising to +-0.3 at 1200K)
----         k=(1.570E+15 -1.0  0.0+7.230E+13  0.0  14.97)
CH2OH   +O2      =CH2O    +HO2                1.570E+15 -1.0       0.0
**** BEGIN DUPLICATE REACTION
CH2OH   +O2      =CH2O    +HO2                7.230E+13  0.0      14.97
**** END DUPLICATE REACTION
---- additional reactions
CH2OH   +H       =CH3     +OH                 1.000E+13  0.0       0.0
---- ERROR numerico
---- RAUL= CH3+OH=CH2OH+H k=(2.64E19/-1.8/33.724)
---- Dean, A.M. and Westmoreland, P.R. Bimolecular QRRK analyss of methyl radical reactions.
---- Int. J. Chem. Kinet. 1987, v.19, p.207
----CH3     +OH      =CH2OH   +OH                 2.640E+19 -1.8      33.7
******************************************                                      
****     16.   CH3O2 Reactions                                                  
******************************************                                      
---- Nota bibliografica: 
---- Paso para la formacion de metanol:  
---- CH3O2  +  H  -> CH3OOH  
---- CH3OOH       -> CH3O  + OH 
---- CH3O   +  H  -> CH3OH  !!!!  Debo incluir estos pasos, (??? Referencias???)i
---- Konov: CH3OH+M->CH3O+H  
---- kcin_inf=(1.380E+16/0.0/401.071)  
---- kcin_low=(5.350E+16/0.0/295.94) 
---- Troe    =(1-0.82) exp(-T/200.0) + 0.82 exp(-T/ 1438.0) 
----  
---- A. Konnov 1998                                                        
---- ko(AR)= 1.550E-22 / -3.3 /        (+,-) 0.3 -> 2.0
---- ko(N2)= 1.600E-22 / -3.3 /        (+,-) 0.3
---- kinf=   7.800E+08 /  1.2 /        (+,-) 0.3
---- Fc  =   0.466 - 1.3 E-04 * T
----
CH3     +O2      +M(1)    =CH3O2   +M(1)      7.800E+08  1.2       0.0
                                    LOW       1.650E+26 -3.300     0.0
                                    TROE   0.495  2325.5    10.0     0.0
---- 22ND SYMP. NO REC CEC
---- CH3O2   +CH2O    >CH3O2H  +CHO                0.130E+12  0.0      37.7          
---- CH3O2H  +CHO     >CH3O2   +CH2O               0.250E+11  0.0      42.3          
---- Konnov 1998, k=(0.13E12/0.0/37.7)
---- Konnov 1999 (Tsang,W and Hampson 1986)
CH3O2   +CH2O    =CH3O2H  +CHO                2.000E+12  0.0     48.74
----
---- CH3O2   +CH3     >CH3O    +CH3O               0.380E+13  0.0      -5.0    
---- CH3O    +CH3O    >CH3O2   +CH3                0.200E+11  0.0       0.0    
---- Konnov 1998, k=(1.5E13/0.0/-5.0)
---- Konnov 1999 (Tsang,W and Hampson 1986)
CH3O2   +CH3     =CH3O    +CH3O               2.400E+13  0.0       0.0
----
---- CH3O2   +HO2     >CH3O2H  +O2                 0.460E+11  0.0     -10.9          
---- CH3O2H  +O2      >CH3O2   +HO2                0.300E+13  0.0     163.3          
---- CEC 94, k=(2.470E+11/0/-6.57),
----         (298-700K, dlog k= +-0.1 at 298K rising to +-0.3 at 700K)
CH3O2   +HO2     =CH3O2H  +O2                 2.400E+11  0.0      -6.6
----
---- CH3O2   +CH3O2   >CH2O    +CH3OH   +O2        0.180E+13  0.0       0.0          
---- CH2O    +CH3OH   +O2      >CH3O2   +CH3O2     0.000E+00  0.0       0.0          
---- CH3O2   +CH3O2   >CH3O    +CH3O    +O2        0.370E+13  0.0       9.2    
---- CH3O    +CH3O    +O2      >CH3O2   +CH3O2     0.000E+00  0.0       0.0
----
---- CEC 94, (298-700K, dlog k= +-0.1 at 298K increasing to +-0.3 at 700K)
---- k=(5.480E+10/0/-3.49), products: (CH3O+CH3O+O2), (CH3OH+CH2O+O2)
---- k1/k2=25exp(-1170/T)
---- Wallington, T.J., Dagaut, P., and Kurylo, M.J.
---- Ultraviolet absorption cross sections and reaction kinetics and
---- mechanisms for peroxy radicals in the gas phase.
---- Chem. Rev., 1992, v. 92, pp. 667-710.
---- RAUL= Autores incluyen la reaccion reversa,VK no!)
CH3O2   +CH3O2   =CH2O    +CH3OH   +O2        2.800E+10  0.0      -3.3
----
CH3O2   +CH3O2   =CH3O    +CH3O    +O2        2.700E+10  0.0      -3.3
---- Tsang  1986
CH3O2   +CHO     >CH3O    +H       +CO2       3.000E+13  0.0       0.0
CH3O2   +CH3CO   >CH3     +CO2     +CH3O      2.400E+13  0.0       0.0 
----
CH3O2   +OH      =O2      +CH3OH              6.000E+13  0.0       0.0
----
----
******************************************                                      
****     17.   CH4 REACTIONS                                                    
******************************************                                      
---- CEC 94, k=(1.325E+04  3.000    33.630), (300-2500K, dlog k = +-0.2
----         at 300 and 2500K reducing to +-0.05 over the range 500-1000K
---- CEC 94, k_r=(6.865E+03/2.74/39.41), dlog k=+-0.3, 300-2500K
---- CH4     +H       =H2      +CH3                1.330E+04  3.000    33.600        
----
---- Espinosa-Garcia, J.; Corchado, J.C. Recalibration of two earlier potential energy surfaces for the CH4+H->CH3+H2 reaction.
---- Application of variational transition-state theory and analysis of the kinetic isotope effects using rectilinear
---- and curvilinear coordinates. J. Phys. Chem. vol.100, p16561 - 16567. 1996
---- CH4     +H       =H2      +CH3                7.107E+13  0.000    48.723
----
---- GRI 3.0
---- Transition-state-theory evaluation of Rabinowitz et al. (1991), Kurylo et al. (1970), Moller et al.(1986),
---- and Kerr and Parsonage (1976).
---- Rabinowitz, M.J., Sutherland, J.W., Patterson, P.M., and Klemm, R.B. (1991) J. Phys. Chem. 95, 674.
---- kcin=(6.60E+08/1.62/45.31)
---- CH4     +H       =H2      +CH3                6.600E+08  1.620    45.310
----
---- CEC 2003:
---- Utiliza los resultados de Rabinowitz et al, y Cohen!
---- From Cohen, International Journal Chemical Kinetics vol23, p.683 (1991)
---- kcin=(6.625E+07/1.90/44.89) dlog= (+,-) 0.2 at 1000K
----                                         0.4 at  400K and 2500K
CH4     +H       =H2      +CH3                1.047E+08  1.900    44.890
----
---- J. W.Sutherland, M.C.Su and J.V.Michael. International Journal Kinetics  vol 33, p.669 2001
---- kcin=(1.767E+14/0.0/57.649)
---- CH4     +H       =H2      +CH3                1.767E+14  0.000    57.649
----
---- CEC 94, k=(7.230E+08  1.560    35.500)
---- (300-2500K, dlog k= +-0.3 falling to +-0.15 at 2500K)
CH4     +O       =OH      +CH3                6.923E+08  1.560    35.500        
---- CEC 94, k=(1.57E+07/1.83/11.64),(250-2500K, dlog k=+-0.07 rising to 0.15)
CH4     +OH      =H2O     +CH3                1.000E+07  1.830    11.600        
---- NIST: Dunlop, J.R.; Tully, F.P. A kinetic study of OH radical reactions with methane and perdeuterated methane.
---- J. Phys. Chem. vol.97. p11148 - 11150. 1993. (293 - 800 K) (0.53-1Bar). 
---- CH4     +OH      =H2O     +CH3                5.828E+04  2.580     8.980 
---- 
---- Cohen N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH + alkane
---- reactions. Int. J. Chem. Kinet. vol.23 p.397 - 417. 1991.(298-1510K) 
---- CH4     +OH      =H2O     +CH3                1.019E+08  1.600    13.054 
----
---- 
---- CEC 94, k=(9.0E+12/0.0/103.4),(600-1000K, dlog k=+-0.2 rising to +-0.3 at 1000K)
CH4     +HO2     =H2O2    +CH3                1.100E+13  0.0     103.100        
---- CH4     +HO2     =H2O2    +CH3                9.000E+12  0.0     103.100
---- CEC 94, k=(3.000E+13  0.0      -1.660), (200-700K, dlog k = +-1.0)
---- MR BERMAN, MC LIN, CHEM. PHYS. 82, 435, 1983 OK CEC 91                     
CH4     +CH      =C2H4    +H                  3.000E+13  0.0      -1.700        
---- 85BOH/DOB, k=(4.300E+12/0/42.0), 296-707K, delta=1.0
---- Bohland, T.; Dobe, S.; Temps, F.; Wagner, H. Gg.
---- Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons
---- in the temperature range 296 K and 707 K Ber. Bunsenges. Phys. Chem. 1985,89,1110.
CH4     +3CH2    =CH3     +CH3                4.300E+12  0.0      42.000        
---- 
---- Wantuck, P.J.; Oldenborg, R.C.; Baughcum, S.L.; Winn, K.R. Direct measurements of methoxy removal rate
---- constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673-973 K. Symp. Int. Combust. Proc.
---- vol22. p. 973. 1989. (673-973K) (0.09Bar) 
---- kcin=(1.319E+14/0/63.02) [1.198+14=(�1.99x10-10 cm3/molecule s)]   ( �3783 J/mole)/RT    
CH4     +CH3O    =CH3OH   +CH3                4.300E+12  0.0      42.000 
---- 
---- Konnov 1999
---- Tsang, 1987
---- CH3OH   +CH3     =CH4     +CH3O               1.450E+01  3.1      29.0
----
---- Jodkowski, J.T.; Rayez, M.-T.; Rayez, J.-C. Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol
---- 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. J. Phys. Chem. A
---- vol 103. p.3750-3765 1999. (300-2000K)(0Bar) Ab Initio
---- kcin=(3.541E21/5/23.364)           [5.88x10-3 (cm3/molecule s)/ 5.00 /e-23364 (J/mole)/RT]
---- CH4     +CH3O    =CH3OH   +CH3                3.541E21  5.0      23.354 
---- 
---- Tsang, 1986 k=(3.01E+013/0/77.32) (incert = 5 )
---- Konnov 1999
CH4     +CH3O2   =CH3O2H  +CH3                1.810E+11  0.0      77.80
----
----
******************************************                                      
****     18.   CH3OH Reactions                                                  
******************************************                                      
---- Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T., Pilling, M.J.,
---- Troe, J., Walker, R.W., and Warnatz, J.
---- Summary table of evaluated kinetic data for combustion modeling: Supplement 1.
---- Combust. Flame, 1994, v.98, pp.59-79
---- CEC 94, k_inf=(6.022E+13/0/0), (300-2000K, dlog k=+-0.3)
----   k_0  =(4.56E+44/-8.2/0), (1000-2000K, dlog k=+-0.5), meas. AR, given H2
----   Fc=(0.82/200/1438/0), (1000-2000K, dFc=+-0.1) for AR
CH3     +OH      +M(1)    =CH3OH   +M(1)      6.000E+13  0.000     0.00
                                    LOW       4.560E+44 -8.200     0.00
                                    TROE   0.820   200.0  1438.0     0.0
---- OK WA 84 NO REC CEC                                                        
---- CH3OH   +H       =CH2OH   +H2                 4.000E+13  0.0      25.5          
---- Raul:Konnov 1999
---- Li, S.C., Williams, F.A. i
---- Experimental and numerical studies of two-stage methanol flames.
---- 26th Symp. (Int.) on Combustion, 1996, pp. 1017-1024.
CH3OH   +H       =CH2OH   +H2                 1.640E+07  2.0     18.89
---- Raul:Konnov 1999 NO VAN!! 
---- Importante con esta reaccion el CO , H2 y H2O se disparan !!!!
---- Warnatz, J. Rate coefficients in the C/H/O system.
---- Combustion Chemistry, ed. W.C. Gardiner,Jr., pub.
---- Springer-Verlag, NY, 1984.
---- CH3OH   +H       =CH3O    +H2                 4.000E+13  0.0      25.5
---- Aditional rxn: CH3OH+H=CH3+H2O
---- Hidaka, Y., Oki, T., Kawano, H.
---- Thermal decomposition of methanol in shock waves.
---- J. Phys. Chem., 1989, v. 93, p. 7134.
---- k=(2.0E14/0.0/22.15)
----
---- OK WA 84 NO REC. CEC                                                       
---- CH3OH   +O       =CH2OH   +OH                 1.000E+13  0.0      19.6          
---- Raul:Konnov 1999
---- Keil, D. G., Tanzawa, T., Skolnik, E. G., Klemm, R. B., Michael, J. V.
---- Rate Constants for the Reaction of Ground State Atomic Oxygen with Methanol
---- J. Chem. Phys., 1981, v. 75, p. 2693
CH3OH   +O       =CH2OH   +OH                 1.630E+13  0.0      21.03
---- Konnov 1998 k=(1.300E+05  2.5  20.92)
---- Raul:Konnov 1999
---- Warnatz, J. Rate coefficients in the C/H/O system.
---- Combustion Chemistry, ed. W.C. Gardiner, Jr., Springer-Verlag, NY , 1984.
CH3OH   +O       =CH3O    +OH                 1.000E+13  0.0     19.56
-----
---- OK WA 84 NO REC CEC
---- CH3OH   +OH      =CH2OH   +H2O                1.000E+13  0.0       7.1   
---- Konnov 1998
---- a.k=(3.000E+04  2.65 -3.7), b.k= (5.300E+03  2.65  -3.7)
---- Raul:Konnov 1999
---- a.Li,S.C.; Williams,F.A.
---- Experimental and numerical studies of two-stage methanol flames.
---- 26th Symp. (Int.) on Combustion, 1996, pp. 1017-1024
---- b.Warnatz, 1984
CH3OH   +OH      =CH2OH   +H2O                1.440E+06  2.00     -3.5
CH3OH   +OH      =CH3O    +H2O                1.000E+13  0.00     -7.1
----
---- OK WA, JE DOVE, BER BUNS GES PHYS CHEM 1040-4, 1983 NO REC. CEC            
---- CH3OH   +HO2     >CH2OH   +H2O2               0.620E+13  0.0      81.1          
---- CH2OH   +H2O2    >HO2     +CH3OH              0.100E+08  1.7      47.9          
----
---- Tsang W.
---- Chemical kinetic data base for combustion chemistry. Part 2. Methanol.
---- J. Phys. Chem. Ref. Data, 1987, v. 16, p. 471.
CH3OH   +HO2     =CH2OH   +H2O2               9.640E+10  0.0     52.58
----
---- Konnov 1999
---- Tsang, 1987
---- CH3OH   +CH3     =CH4     +CH2OH              3.190E+01  3.17     30.0
---- CH3OH   +CH3     =CH4     +CH3O               1.450E+01  3.1      29.0
----
---- KG SPINDLER, HGG WAGNER, BER BUNSENGES. PHYS. CHEM. 86, 2, 1982
CH3OH   +CH3     =CH4     +CH2OH              9.000E+12  0.0      41.1
----
---- 22ND SYMP NO REC. CEC                                                      
---- CH3O    +CH3OH   >CH2OH   +CH3OH              0.200E+12  0.0      29.3          
---- CH2OH   +CH3OH   >CH3O    +CH3OH              0.220E+05  1.7      45.4          
---- Tsang 1987
CH3O    +CH3OH   =CH2OH   +CH3OH              3.000E+11  0.0      17.0
----
---- Tsang, 1987
CH3OH   +O2      =HO2     +CH2OH              2.050E+13  0.0     189.1
----
---- Konnov 1998 CH3OH+CH2O=CH3O+CH3O k=( 0.153E+13  0.0 333.2)
---- Konnov 1999
---- Hassinen, E., Koskikallio, J. Flash Photolysis of Methyl Acetate in Gas Phase.
---- Products and Rate Constants of Reactions between Methyl, Methoxy and Acetyl Radicals.
---- Acta Chem. Scand., A 1979, v. 33, p. 625.
CH3O    +CH3O    =CH3OH   +CH2O               2.320E+13  0.0       0.0
******************************************                                      
****     19.   CH3O2H Reactions                                                 
******************************************                                      
---- OK CEC 91                                                                  
---- CH3O2H           =CH3O    +OH                 4.000E+15  0.0     180.5          
---- CEC 94, k=(6.0E+14/0/177.10)
----         (500-800K, dlog k = +-0.2 at 600K rising to +-0.5 at 500K and 800K)
CH3O2H           =CH3O    +OH                 6.000E+14  0.0     177.1
---- RAUL:Atkinson 97
---- k=(1.15E+12/0/-1.5884)
---- Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry:
---- supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
---- J. Phys. Chem. Ref. Data, 1997, v. 26, pp. 521-1011.
---- Comentario es MUCHO mas rapida que CEC 94 ( varios ordenes de magnitud)
---- OK CEC 89                                                                  
---- OH      +CH3O2H  =H2O     +CH3O2              2.600E+12  0.0       0.0          
---- CEC 94, k=(7.23E+11/0/-1.08)
----         (300-1000K, dlog k = +-0.2 at 300K rising to +-0.4 at 1000K)
OH      +CH3O2H  =H2O     +CH3O2              7.300E+11  0.0      -1.0
---- additional reactions
---- CEC 94, k=(3.300E+11/0/19.87),(300-1000K) (incertidumbre = 3.16)
---- CEC 94, k=(1.987E+13/0/19.87),(300-1000K, dlog k=+-0.3 r. to +-0.5 at 1000K)
O       +CH3O2H  =OH      +CH3O2              1.990E+13  0.0      19.90
----
---- Konnov 1998 (incerti = 5)
---- Tsang 1986, Chemical kinetic data base for combustion chemistry.
---- Part I. Methane and related compounds8
---- J. Phys. Chem. Ref. Data
CH3O2   +H2O2    =CH3O2H  +HO2                2.400E+12  0.0      41.80
----
---- Tsang, 1986 k=(3.01E+12/0/57.37) (incert = 2)
---- Konnov 1999
CH3O2   +CH3OH   =CH3O2H  +CH2OH              1.810E+11  0.0      57.70
******************************                                                  
****                         *                                                  
****  4. C2 MECHANISM C      *                                                  
****                         *                                                  
******************************                                                  
******************************************                             
****    20.    C2H REACTIONS                                          
******************************************                           
---- OK CEC 91                                                                  
---- C2H     +O       =CO      +CH                 1.000E+13  0.0       0.0
---- CEC 94, k= (1.024E+13/0/0), (300-2500K, dlog k = +-1.0)
---- RAUL: Devriendt, K., Peeters, J.97,(experimental)
---- Direct identification of the C2H
---- J. Phys. Chem., 1997, v. A101, pp. 2546-2551.
C2H     +O       =CO      +CH                 2.410E+11  0.0      1.91
----
---- OK CEC 89 OK TSANG & HAMPSON 86. CHANNEL CHO + OH NOT CONSIDERED           
---- C2H     +O2      =HCCO    +O                  3.000E+12  0.0       0.0
---- CEC 94, k=(1.81E+13/0/0), (300K, dlog k = +-0.5)
---- products: (HCCO+O),(CH+CO2),(H+CO+CO),(O+C2HO),(CHO+OH)
---- RAUL: Konnov 1999
---- Laufer, A.H. and Lechleider,
---- R. Reaction of ethynyl radicals with O2. Rate constant for formation of CO.
---- J. Phys. Chem. 1984, v.88, p.66.
C2H     +O2      =HCCO    +O                  6.000E+11  0.0       0.0
---- additional reactions
---- RAUL: Antigua VK k=(9.000E+12  0.0  0.0)
---- Thiesemann, H.; Taatjes, C.A (Experimental)
---- Temperature dependence of the reaction C2H(C2D)+O2 between 295 and 700 K
---- Chem. Phys. Lett,vol 270, p.580 - 586, 1997
C2H     +O2      =CO2     +CH                 4.700E+13 -0.16      0.0
---- CEC 94, k=(1.81E+12/0/0), (298 K, dlog k = +- 1.0)
---- Tsang, 1986 (incert = 3)
C2H     +CH4     =C2H2    +CH3                1.810E+12  0.0       0.0
******************************************                            
****    20A.    HCCO REACTIONS                                       
******************************************                          
---- CEC 94, k=(1.506E+14/0/0), (300-2500K, dlog k = +-0.4)
---- products: (CH2+CO), (H2+C2O), (HCCOH); only first considered here
---- RAUL: Frank, P.; Bhaskaran, K.A.; Just, Th.
---- Acetylene oxidation: The reaction C2H2 + O at high temperatures
---- 21st Symp. Int. Combust. Proc, 1988
HCCO    +H       =3CH2    +CO                 1.500E+14  0.0       0.0
---- CEC 94, k=(9.635E+13  0.0       0.0), (300-2500K, dlog k= +-0.3)
---- WITHOUT REVERSE REACTION (NO ELEMENTARY REACTION)
---- Frank, P., Bhaskaran, K.A., and Just, Th.
---- (1988) 21st Symposium (International) on Combustion, p. 885.
HCCO    +O       >CO      +CO      +H         9.640E+13  0.0       0.0
---- JA MILLER, RE MITCHELL, MD SMOOKE, RJ KEE, 19TH SYMP., 181-96,1982         
---- NO REC. CEC                                                                
HCCO    +3CH2    =C2H3    +CO                 3.000E+13  0.0       0.0
---- additional reactions
---- CEC 94, k=(2.77E+11/0/-7.15), (300-1000K, dlog k = +-1.0)
---- products: (HCCO),(H+C2O)
CH      +CO      =HCCO                        2.800E+11  0.0      -7.1
----
----
---- RAUL: SPECIAL GRI3, k_inf=(5.000E+13/0/0), (300-2500K)
---- Berman et al. (1982)
---- Berman, M.R., Fleming, J.W., Harvey, A.B., and Lin, M.C.
---- (1982) 19th Symposium (International) on Combustion, p. 73.
---- Frank et al. (1988)
---- Frank, P., Bhaskaran, K.A., and Just, Th.
---- (1988) 21st Symposium (International) on Combustion, p. 885
----   k_0  =(2.69E+28/-3.74/8.09)
----   Fc=(0.576/237/1652/5069), dFc=+-0.1 for AR
**** CH      +CO      +M(2)    =HCCO    +M(2)      5.000E+13  0.000     0.00
****                                     LOW       2.690E+28 -3.740     8.09
****                                     TROE   0.576   237.0  1652.0   5069.0
---- Original: M( 1)! Ahora M( 6)
---- SOURCE:
---- Results of an RRKM calculation based on the recombination rate data of Berman et al. (1982)
---- and the decomposition rate data of Frank et al. (1988) GRI 3.0
---- N2                    1.0
---- H2     Enhanced by    2.0
---- H2O    Enhanced by    6.0
---- CH4    Enhanced by    2.0
---- CO     Enhanced by    1.5
---- CO2    Enhanced by    2.0
---- C2H6   Enhanced by    3.0
---- AR     Enhanced by    0.7
----
----- N2:1.0;  H2:2.0; H2O:6.0; CH4:2.0; CO:1.5; CO2:2.0; C2H6:3.0; AR:0.7
******************************************                            
****    21.    C2H2 REACTIONS                                         
******************************************                            
---- P FRANK, T JUST, COMB AND FLAME 38, 231, 1980 NO REC. CEC
---- 84 WAR, k(AR)=(4.0E+16/0/447.0), (1500-3000K, dlog k = +-0.5)
---- C2H2+M(1)=C2H+H+M(1); k=(3.600E+16  0.0 446.0)
---- RAUL: SPECIAL GRI 3.0
---- Sidhu et al. (1992) and P. Frank C and F.
---- Sidhu, S.S., Kern, R.D., Xie, K., Chen, H., and Harding, L.B.
---- (1992) Combust. Sci. Techn. 82, 101.
---- kinf=(1.000E+17/-1.000/0.00)
---- ko= (3.750E+33/-4.800/8.94)
---- Fcen=(0.646/132.0/1315.0/5566.0)
H       +C2H     +M(1)    =C2H2    +M(1)      1.000E+17 -1.000     0.00
                                    LOW       3.750E+33 -4.800     8.94
                                    TROE   0.646   132.0  1315.0   5566.0
----- M_original = M(1) Ahora M(6)
----- N2:1.0;  H2:2.0; H2O:6.0; CH4:2.0; CO:1.5; CO2:2.0; C2H6:3.0; AR:0.7
-----           N2                    1.0
-----           H2     Enhanced by    2.0
-----           H2O    Enhanced by    6.0
-----           CH4    Enhanced by    2.0
-----           CO     Enhanced by    1.5
-----           CO2    Enhanced by    2.0
-----           C2H6   Enhanced by    3.0
-----           AR     Enhanced by    0.7
-----
---- JA MILLER, RE MITCHELL, MD SMOOKE, RJ KEE, 19TH SYMP., 181-96,1982         
---- NO REC CEC                                                                 
C2H2    +O2      =HCCO    +OH                 2.000E+08  1.5     126.0
---- CEC 94, k=(6.620E+13/0/116.40),(1000-3000K, dlog k=+-1.0)
---- CEC 94, k_r=(1.080E+13/0/9.06),(300-2500K, dlog k=+-0.4)
---- RAUL:Konnov, 1999
---- Peeters,J., Van Look,H., Ceursters,B.
---- Absolute rate coefficients of the reactions of C2H with NO and H2 between 295
---- and 440 K. J. Phys. Chem. 1996, v. 100, pp. 15124-1512.
C2H     +H2      =C2H2    +H                  7.880E+05  2.39     1.446
---- CEC 94, k=(7.23E+06/2.1/6.57),(295-2500K, dlog k = +-0.2),
---- k2/k=0.7+-0.2 over the whole range
----VK CEC 1994 (branching ratio 0.3 / 0.7)
C2H2    +O       =3CH2    +CO                 2.200E+06  2.1       6.57
C2H2    +O       =HCCO    +H                  5.100E+06  2.1       6.57
---- CEC 94, k=k1+k2=(6.000E+13/0.0/54.0), (1000-2000K, dlog k = +-1.0)
---- products: (h2o+c2h),(h+ch2co),(c2h2oh), last at low temp. and high press.
---- RAUL: Miller, J.A. and Melius, C.F. GRI3.0.
---- A theoretical analysis of the reaction between hydroxyl and acetylene.
---- 22nd Symp. (Int.) on Combustion, The Combustion Institute,1988, pp.1031-1039.
C2H2    +OH      =H2O     +C2H                3.385E+07  2.0      58.52
---- OK CEC 91                                                                  
----*****C2H2    +C2H     =C4H2    +H                  3.000E+13  0.0       0.0
---- CEC 94, k=(9.0E+13/0.0/0.0), (300-2700K,
----         dlog k = +-0.2 at 298K rising to +-0.5 at 2700K)
---- RAUL: Shin, K.S.; Michael, J.V, (experimental, 296-1480K).
---- Rate constants (296-1700 K) for the reactions ...
---- J. Phys. Chem, 1991, 5864 - 5869, vol 95
C2H2    +C2H     =C4H2    +H                  1.810E+14  0.0      1.940
******************************************                            
****    21A.    CH2CO REACTIONS                                       
******************************************                            
---- OK WA 84 NO REC CEC, k(Ar)=(3.6e+15/0/247.999), 1000-2000K, dlog k=+-0.5
---- 86 FRA/BHA, k(Ar)=(2.30E+15/0/241.03), (1650-1850K, dlog k = +- 1.0)
---- RAUL: original k=(1.000E+16  0.0 248.0)
---- Konnov, 1999
---- Wagner, H.Gg., and Zabel, F. (1971) Ber. Bunsenges. Phys. Chem. 71, 114.
---- Frank, P., Bhaskaran, K.A., and Just, T. (1986) J. Phys. Chem. 90, 2226.
---- kinf=(3.000E+14/0.000/296.8)
---- ko= (2.300E+15/0.000/240.78)
---- Fcen=(?)
----
---- CH2CO   +M(1)    =3CH2    +CO      +M(1)      3.000E+14  0.000    296.8
----                                     LOW       2.300E+15  0.000    240.78
----                                     TROE   0.000   000.0  000.0   000.0
---- 
---- H2O:6.2; AR:1.0; H2:2.5; CO:1.875; CO2:3.75; CH4:3.2; CH3OH:7.5
---- 
---- GRI 3.0 With the same references developed pressure dependence!
---- Original M( 1) ahora M( 6)
---- k_o = 2.69E+33 T^(-5.11) exp(-7095 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 8.10E+11 T^0.5 exp(-4510 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.591) exp(-T/275) + 0.591 exp(-T/1226) + exp(-5185/T)
----
3CH2    +CO      +M(1)    =CH2CO   +M(1)      8.100E+11  0.500    29.65
                                    LOW       2.690E+33 -5.110    18.81
                                    TROE   0.591   275.0 1226.0  5185.0
----
----
---- Third-body efficiencies GRI 3.0:
----                N2                    1.0
----                H2     Enhanced by    2.0
----                H2O    Enhanced by    6.0
----                CH4    Enhanced by    2.0
----                CO     Enhanced by    1.5
----                CO2    Enhanced by    2.0
----                C2H6   Enhanced by    3.0
----                AR     Enhanced by    0.7
----
----
---- Original Konnov!:
---- CH2CO   +M( 1)   =3CH2    +CO      +M( 1)     3.000E+14  0.000    296.8
----                                     LOW       2.300E+15  0.000    240.78
----                                     TROE   0.000   000.0  000.0   000.0
---- H2O:6.2; AR:1.0; H2:2.5; CO:1.875; CO2:3.75; CH4:3.2; CH3OH:7.5
----
---- OK CEC 91 TWICE FASTER                                                     
---- CH2CO   +H       =CH3     +CO                 3.600E+13  0.0      14.1
---- CEC 94, k=(1.81E+13/0/14.13), (200-2000K, dlog k=+-0.5 rising to 1.0 at
----         2000K), products: (ch3+co),(ch2cho),(h2+hcco);
---- k2/k is considered small, k3 may be important at high temp.
---- RAUL: original: k=(3.000E+13  0.0 14.1)
---- J. Hranisavljevic, J., Kumaran, S.S., Michael, J.V.
---- (1998) 27th Symp. (Int.) on Combustion, pp. 159-166.
---- Experimental (863-1400K)
CH2CO   +H       =CH3     +CO                 3.280E+10 0.851     11.9
---- OK CEC 91. PRODUCTS: WA 18 TH SYMP. COMB, 369-84, 1981                     
---- CH2CO   +O       =CHO     +CHO                2.300E+12  0.0       5.7
---- CEC 94, k=(2.29E+12/0/5.65), (230-500K, dlog k = +-0.3)
---- products: k1=(CH2O+CO),k2=(CHO+H+CO),k3=(CHO+CHO)
---- no rec. are made for the branching ratio, assume
CH2CO   +O       =CH2O    +CO                 0.750E+12  0.0       5.7
CH2CO   +O       >CHO     +H       +CO        0.750E+12  0.0       5.7
CH2CO   +O       =CHO     +CHO                0.750E+12  0.0       5.7
---- OK CEC 91                                                                  
---- CH2CO   +OH      =CH2O    +CHO                1.000E+13  0.0       0.0
---- CEC 94, k=(1.024E+13/0/0), (300-2000K, dlog k= =-1.0)
---- products: (CH2OH+CO), (CH2O+CHO)
---- CH2CO+OH=>(CH3+CO2)(CH2OH+CO)(CH3O+CO)(HCO+CH2O)(HCCO+H2O)(CH2O+H+CO)
---- k(overall)=  7.20E12  0.00  0.00   D/U       296  [92OEH/TEM]
---- According to the measurements of [94GRU/NOL]
---- k(2)/k=0.60+-0.10; k(4)/k<0.02; k(5)/k<0.01; estimated: k(1)/k= 0.25
---- here k(1)/k= 0.35 and k(2)/k= 0.65
CH2CO   +OH      =CH3     +CO2                2.520E+12  0.0       0.0
CH2CO   +OH      =CH2O    +CHO                4.680E+12  0.0       0.0
---- Dagaut 1991                                                                  
CH2CO   +O2      =CH2O    +CO2                1.000E+08  0.0       0.0
******************************************                         
****    25.    C2H3 REACTIONS                                       
******************************************                           
---- CEC 94, k_inf=(2.00E14/0.00/166.28), (500-2500K, dlog k=+-0.5)
----    k_0(AR+N2)=(4.16E41/-7.5/190.39), (500-2500K, dlog k=+-0.5)
----    1.187e+42, 1.039e+42 scaled for H2
----         Fcent=(0.35)               , (500-2500K, dFc = +- 0.1)
C2H3    +M(1)    =C2H2    +H       +M(1)      2.000E+14  0.000   166.3
                                    LOW       1.000E+42 -7.500   190.4
                                    TROE   0.350     0.0     0.0     0.0
---- Tsang, 1986. Uncertainty = 3.0   
C2H3    +OH      =C2H2    +H2O                3.011E+13  0.0       0.0
---- CEC 94, k=(1.2E+13/0/0), (300-2500K, dlog k = +-0.5)
C2H3    +H       =C2H2    +H2                 1.200E+13  0.0       0.0
---- CEC 94, k=(3.01E+13/0/0), (300-2000K, dlog k= +-0.5), 1/3 FOR EACH REACTION
C2H3    +O       =C2H2    +OH                 1.000E+13  0.0       0.0
C2H3    +O       =CH3     +CO                 1.000E+13  0.0       0.0
C2H3    +O       =CHO     +3CH2               1.000E+13  0.0       0.0
---- 
---- change of reaction products, !!!! important note !!!!
---- !!!! then reaction 1CH2 + CH3 ---> C2H4 + H necessary !!!!!
---- !!!! additional reaction channel CH + H2O ---> CH2O + H (*) necessary
---- to channel CH + H2O ---> 3CH2 + OH (*) too,
---- sum of rate constant for above reaction (*) are equal to
---- recommendation of CEC1992 !!!!!
---- decreases flame velocities to correct magnitude
---- CEC 1992=1994
---- C2H3+O2=>(CH2O+CHO);(CH2CHO+O);(C2H2+HO2)
---- k1=k-(k(CH2CHO+O)+k(C2H2+HO2))
----
---- RQ 15/09/2004
---- C2H3    +O2      =CH2O    +CHO                5.420E+12  0.0       0.0
**** BEGIN DUPLICATE REACTION
---- C2H3    +O2      =CH2O    +CHO               -7.000E+14 -0.6      13.1
**** END DUPLICATE REACTION
---- Esta reacion saca el anterior comentario de Volker.  
----
---- Mebel, A.m.; Diau, E.W.G.; Lin, M.C.; Morokuma, K. Ab initio and RRKM calculations for multichannel rate constants
---- of the C2H3 + O2 reaction .  J. Am. Chem. Soc. vol.118 p.9759-9771. 1996. (300-3500K) (1.01 Bar)
---- 2.76x10-11 (cm3/molecule s) (T/298 K)-1.39 e-4240 (J/mole)/RT
---- kcin=(4.569E16/-1.39/4.24)
---- C2H3    +O2      =CH2O    +CHO                4.569E16 -1.39      4.240
----
---- Krueger, H.; Weitz, E. Diode laser probes of vinyl radical kinetics: The reaction of C2H3 with HCl and DCl
---- J. Chem. Phys. vol 88. p.1608. 1988. (298K 0.0Bar)   
---- C2H3    +O2      =CH2O    +CHO                6.023E+12  0.0       0.0
---- 
---- Slagle, I.R.; Park, J.-Y.; Heaven, M.C.; Gutman, D. Kinetics of polyatomic free radicals produced by laser
---- photolysis. 3. Reaction of vinyl radicals with molecular oxygen. J. Am. Chem. Soc. vol.106. p.4356. 1984.
---- (297-602K) 0 Bar. kcin=(3.969E+12/0.0/-1.048)  (+/-) 419 J/mol    
---- (+,-)( 1.31x10-12 cm3/molecule s) = (+,-) 7.890E+11
---- C2H3    +O2      =CH2O    +CHO                3.969E+12  0.0      -1.0    
---- C2H3    +O2      =CH2O    +CHO                3.969E+14  0.0       1.0
---- 
---- RQ 11-11-2004
---- 2003 From Slage and Knyazev
---- kcin=(5.721E+13/0/1)  
----                      (+,-) 0.1 at 290K   * 1.25    7.151E+13
----                      (+,-) 0.3 at 900K   * 2.00    1.114E+14
---- 15/09/2004
C2H3    +O2      =CH2O    +CHO                5.721E+13  0.0      -1.0
----
---- Hidaka Y; Toshihide Nishimori, Kazutaka Sato, Yusuke Henmi, Rieko Okuda and Koji Inami.
---- Shock tube and modeling study of ethylene pyrolysis and oxidation. Combustion and Flame 117:755-776 1999.
---- kcin=(4.000E+21/-3.0/2.4)
---- C2H3    +O2      =CH2O    +CHO                4.000E+21 -3.0       2.4
----
---- VK Bozzelli, J.w., Dean, A.M., J. Phys. Chem. 92, 651, (1992)
---- VK Bozzelli T(high) value
---- kcin=(2.460E+15/-0.78/13.12)
C2H3    +O2      =CH2CHO  +O                  2.460E+15  -0.78     13.12
----
---- Mebel, A.m.; Diau, E.W.G.; Lin, M.C.; Morokuma, K. Ab initio and RRKM calculations for multichannel rate constants
---- of the C2H3 + O2 reaction .  J. Am. Chem. Soc. vol.118 p.9759-9771. 1996. (300-3500K) (1.01 Bar)
---- 9.65x10-14 (cm3/molecule s) (T/298 K)-0.29 e-41.57 (J/mole)/RT
---- kcin=(3.0329E+11/0.29/0.04157)
---- NOTA: En el articulo original hay un error en el factor exponencial!!!!
----       En el articulo Mabel da un exponente de (-0.29) ojo valor real (+0.29)!!
---- C2H3    +O2      =CH2CHO  +O                  3.032E+14   0.29    0.0415
----
---- Mebel 1996 (Lin) (1.340E+06  1.61 -1.61)
---- Mebel, A.M., Diau, E.W.G., Lin, M.C., and Morokuma, K.
---- (1996) J. Am. Chem. Soc. 118, 9759
C2H3    +O2      =C2H2    +HO2                1.340E+06   1.61     -1.61
******************************************                            
****    22A.   CH3CO REACTIONS                                        
******************************************                            
---- KINF OK WA 84                                                              
---- CEC 94, k_inf=(5.06E11/0/28.77), (300-500K, dlog k=+-0.5),* 3.16 !!!
----       k_0(N2)=(1.52E12/0/ 0.00), (350-350K, dlog k=+-0.5),3.81e12
----       k_0(HE)=(1.09E14/0/15.88), (400-500K, dlog k=+-0.2),3.11e14
----     Fcent(N2)=(0.60)           , (300-350K, dFc = +- 0.1)
----     Fcent(HE)=(0.50)           , (400-500K, dFc = +- 0.1)
CH3     +CO      +M(1)    =CH3CO   +M(1)      5.058E+11  0.000    28.77
                                    LOW       3.109E+14  0.000    15.88
                                    TROE   0.600     0.0     0.0     0.0
---- RAUL: original (CH3CO+H=CH2CO+H2) k=(2.00E+13/0.0/0.0)
---- Konnov 1999
---- Bartels,M., Edelbuttel-Einhaus,J., and Hoyermann,K.
---- The detection of CH3CO, C2CHO by rempi/mass spectrometry and
---- the application to the study of the reactions H + CH3CO and O + CH3CO
---- 23 th Symp. (Int.) on Combustion. 1991, pp.131-138
CH3CO   +H       =CH2CO   +H2                 1.150E+13  0.0       0.0
CH3CO   +H       =CH3     +CHO                2.150E+13  0.0       0.0
******************************************                           
****    22B.   CH2CHO REACTIONS                                     
******************************************                         
---- NOTA2:INCORPORADAS EN EL MECANISMO DE BAJA TEMPERATURA                                                    
CH2CHO  +O2      =CH2CO   +HO2                1.100E+11  0.0       0.0
CH2CHO  +O2      =CH2O    +CO      +OH        3.200E+10  0.0       0.0
---- ANALOGY WITH CH3CO
---- RAUL: Rate constant from Bartels, M., Edelbuttel-Einhaus, J., and Hoyermann, K.
---- (1990) 23rd Symp. (Int'l.) on Combustion p. 131.
---- Product branching ratio from Ohmori, K., Miyoshi, A., Matsui, H., and Washida, N.
---- (1990) J. Phys. Chem. 94, 3253.
---- kcin=(2.100E+13/0.0/0.0)
---- kcin=(1.100E+13/0.0/0.0)
CH2CHO  +H       =CH3     +CHO                2.100E+13  0.0       0.0
CH2CHO  +H       =CH2CO   +H2                 1.100E+13  0.0       0.0
******************************************                            
****    23.    C2H4 REACTIONS                                          
******************************************                             
---- RAUL: GRI3 incluye dependencia de la presion,
---- k0=(1.58E+51*T^(-9.30)*exp(-408.8/RT)
---- kinf=(8.00E+12*T^0.44*exp(-371.058/RT)
---- Fcen= (1-0.735)*exp(-T/180) + 0.735*exp(-T/1035) + exp(-5417/T)
---- N2                    1.0
---- H2     Enhanced by    2.0
---- H2O    Enhanced by    6.0
---- CH4    Enhanced by    2.0
---- CO     Enhanced by    1.5
---- CO2    Enhanced by    2.0
---- C2H6   Enhanced by    3.0
---- Ar     Enhanced by    0.7
----
---- Ref. Tsang, kinf, Troe, Zelson, L.S., Davidson, D.F., and Hanson, R.K.
---- (1994) J. Quant. Spectrosc. Radiat. Transfer 52,31.
----  
---- C2H4    +M( 6)   =C2H2    +H2      +M( 6)     8.000E+12  0.440   371.06
----                                     LOW       1.580E+51 -9.300   408.80
----                                     TROE   0.735   180.0  1035.0  5417.0
----
---- CEC 94, k(AR)=(3.490E+16/0.0/299.32), (1500-3200K, dlog k = +-0.3)
C2H4    +M(1)    =C2H2    +H2      +M(1)      3.490E+16  0.0     300.0
---- 
---- RAUL: GRI3 incluye dependencia de la presion,
---- k0=(1.40E+30*T^(-3.86)*exp(-13.87/RT)
---- kinf=(6.08E+12*T^0.27*exp(-1.17/RT)
---- Fcen= (1-0.782)*exp(-T/207.5) + 0.782*exp(-T/2663) + exp(-6095/T)
---- Just, T., Roth, P., and Damm, R. (1977) 16th Symposium (International) on Combustion, p. 961
---- Tanzawa, T., and Gardiner, W.C. (1980) Combust. Flame 39, 241.
----
---- C2H3    +M( 6)   +H       =C2H4    +M( 6)     6.080E+12  0.270   1.1700
----                                     LOW       1.400E+30 -3.860   13.870
----                                     TROE   0.782   207.5  2663.0  6095.0
-----
---- CEC 94, k(AR)=(2.590E+17/0.0/404.09),(1500-3200K, dlog k = +-0.5)
C2H4    +M(1)    =C2H3    +H       +M(1)      7.400E+17  0.0     404.0
---- 
---- OK CEC 91                             
---- C2H4    +H       =C2H3    +H2                 0.540E+15  0.0      62.9 
---- NIST
---- Knyazev, V.D.; Bencsura, A.; Stoliarov, S.I.; Slagle, I.R.
---- Kinetics of the C2H3 + H2 = H + C2H4 and CH3 + H2 = H + CH4 reactions
---- J. Phys. Chem, 11346-11354,vol 100, 1996
C2H4    +H       =C2H3    +H2                 3.808E+07  1.93     54.21
---- 
---- 2003
---- kcin=(3.9E-22/ 3.62 / [5.67/T] )
----                 (+,-) 2.51  {400 < T < 2000K} 
---- C2H4    +H       =C2H3    +H2                 2.349E+02  3.62     47.140
----
---- CEC 94 C2H4+O=>(CH2CHO+H);(CHO+CH3);(CH2O+CH2);(CH2CO+H2)
---- k=(1.355E+07/1.88/0.765) all channel,(300-2000K, dlog k=+-0.1 r. to +-0.3)
---- k1/k=0.35+-0.05, k2/k=0.6+-0.1, k3/k=0, k4/k=0.05+-0.10 at p>3torr,T>300K
----
---- C2H4+O=>                    %
----         CH2CHO+H  (k1/k)=0.3468  4.700E+06 4.065E+06 0.30
----         CHO+CH3   (k2/k)=0.5977  8.100E+06 8.800E+06 0.65       k=1.355E+07 / 1.88 / 0.765
----         CH2O+CH2  (k3/k)=0.0494  6.700E+05
----         CH2CO+H2  (k4/k)=0.0022  3.000E+04
----
---- NIST                                                            k=2.253E+07 / 1.88 / 0.765
----
---- 
---- Konnov: Sin incluir C2H3 +OH kglobal=VK, y se incluye k3/k
----         Inluyendo   C2H3 +OH kglobal=2.86E+07!!!!
---- 
C2H4    +O       =CH2CHO  +H                  4.700E+06  1.88      0.75
C2H4    +O       =CHO     +CH3                8.100E+06  1.88      0.75
C2H4    +O       =CH2CO   +H2                 6.700E+05  1.88      0.75
C2H4    +O       =CH2O    +1CH2               3.000E+04  1.88      0.75
---- 
---- Mahmud, K., Marshall, P., and Fontijn, A. A high-temperature photochemistry kinetics study of the reaction of
---- O(3P) atoms with ethylene from 290 to 1510 K. J. Phys. Chem. 1987, v.91, p.1568.
---- kcin=(1.510E+07/1.88/ 14.58)
---- 1.33x10-12 (cm3/molecule s) (T/298 K)1.91 e-15631 (J/mole)/RT (1.506E+07/1.91/15.63)  
---- C2H4    +O       =C2H3    +OH                 1.510E+07  1.88     14.58
C2H4    +O       =C2H3    +OH                 1.706E+07  1.91     15.63
----
---- NIST:Gaedtke, H.; Glaenzer, K.; Hippler, H.; Luther, K.; Troe, J.
---- Symp. Int. Combust. Proc.,1973, p.295. kcin=(6.986E+11/0/0)
---- C2H4    +O       =C2H3    +OH                 6.986E+11  0.0       0.00
----
---- Original k=(2.050E+13/0.0/24.9)   
---- CEC 94,  k=(2.050E+13/0.0/24.9), (650-1500K, dlog k = +-0.5)
---- 2003 = 94
----  
---- Tully, F.P. (1988) Chem. Phys. Lett. 143, 510.
---- kcin=(2.017E+13/0.0/24.86) Hydrogen-atom abstraction from alkenes by OH. Ethene and 1-butene 
---- (650-901K) (0.13-0.47 Bar) Medido!!!!
C2H4    +OH      =C2H3    +H2O                1.517E+13  0.0     24.86
---- 
---- Liu, A.D., Mulac, W.A., and Jordan, C.D. (1987) Int. J. Chem. Kinet. vol.92. p.3828 1988 (723-1173K) (1.01Bar) Transition Stated
---- Kinetic isotope effects in the gas-phase reaction of hydroxyl radicals with ethylene in the temperature range 343-1173K 
---- and at 1-atm pressure. 
---- Theory kcin=(2.095E+06[+/-1.274E+05]  //  2.01  //  4.864[+/-0.097] ) Sugeridad por CEC 94
---- C2H4    +OH      =C2H3    +H2O                2.095E+06  2.0       4.864
---- 
---- GRI 3.0, Utiliza los valores de los anteriores pero desarrolla la dependencia de T (fit the polino)   
---- Bott, J.F., and Cohen, N. (1991) Int. J. Chem. Kinet. 23, 1075
---- kcin=(3.605E+06/2.0/10.45)
---- C2H4    +OH      =C2H3    +H2O                3.605E+06  2.0      10.45
---- 
---- additional reactions
---- CEC 94, k=(9.65E+13/0/0), k2/k=0.2 over range 300-1000K
----         dlog k= +-0.5 at 1000K reducing to +-0.2 at 300K, d(k2/k1)=+-0.1
C2H4    +1CH2    =C3H6                        7.240E+13  0.0       0.00
----
---- CEC 94, k=(1.32E+14/0/-1.44), (200-700K, dlog k = +- 1.0)
---- products: (C3H4+H),(3CH2+C2H3)
---- C2H4    +CH      =C3H4    +H                  1.343E+14  0.0      -1.44
----
---- NIST, Experimental
---- Berman, M.R.; Fleming, J.W.; Harvey, A.B.; Lin, M.C. Temperature Dependence of
---- the Reactions of CH Radicals with Unsaturated Hydrocarbons. Chem. Phys. vol 73. p.27.00 1982
---- kcin=(1.343E+14/0.0/-1.44) [2.23x10-10 (�2.66x10-11 cm3/molecule s) // 0.0 // e+{1.438 (�288J/mole)/RT}]
C2H4    +CH      =C3H4    +H                  1.343E+14  0.0      -1.44
---- 
---- Esta reaccion despelota TODO cuando se usa CEC   
---- CEC 94, k=(4.16E+12/0/46.56), (400-3000K, dlog k = +-0.5)
---- Incertidumbre 3.16
---- C2H4    +CH3     =C2H3    +CH4                4.160E+12 0.00      46.56
----
---- GRI 3.0
---- kcin=(2.27E05/2/38.45)  Kerr, J.A., and Parsonage, M.J.
---- (1976) Evaluated Kinetic Data on Gas Phase Hydrogen Transfer
---- Reactions of Methyl Radicals, Butterworths, London. 
---- C2H4    +CH3     =C2H3    +CH4                2.270E+05  2.0      38.45
----
---- CEC 2003
---- kcin=(1.000E+-16/1.56/ {8.37/T})  -> kcin=(6.023E+07/1.56/69.58)
----                  (+,-) 3.16  [650-2800K]
---- C2H4    +CH3     =C2H3    +CH4                1.903E+08 1.56      69.58
----
---- Zhang, H-X.; Back, M.H. Rate constants for abstraction of hydrogen from ethylene
---- by methyl and ethyl radicals over the temperature range 650-770K. Int. J. Chem. Kinet.
---- vol.22 pag.21. 1990 (0.27 - 0.53 Bar)(650-776K) Uncertaintly=1.58
---- kcin=(5.011E+11/0.0/63.024) ( �3151 J/mole)
C2H4    +CH3     =C2H3    +CH4                5.011E+11  0.0      63.02
----
---- Tsang 1986
---- kcin=(4.222E+13/0.0/241.12) Uncertainty=5.0
C2H4    +O2      =C2H3    +HO2                4.222E+13  0.0     241.12
----
---- RQ : Incremento el consumo de fuel para obtener el valor de methanol! 
---- 11-11-2004
---- Next three Konnov:
---- kcin1=(1.000E+11  0.0      41.80) 
---- kcin2=(1.200E+11  0.0      28.21)
---- kcin3=(1.000E+11  0.0      60.61)
---- Multiplico por 10 !!!!! 
----    Estimated
----    kcin=(1.000E+11/0.0/41.80)   
----    (2.000E+14/0.0/41.80)
C2H4    +CH3O    =C2H3    +CH3OH              1.000E+11  0.0      41.80
----
---- From Nancy mechanism: No funciona bien!
---- kcin=(1.440E+01/3.1/28.84)
---- C2H3    +CH3OH   =C2H4    +CH3O               1.440E+01  3.1      28.84
----
----    Tsang, W. and Hampson, R.F. Chemical kinetic data base for combustion chemistry. 
----    Part I. 1986, v.15, p.1087
----    kcin=(1.200E+11/0.0/28.21)     
C2H4    +CH3O    =CH2O    +C2H5               1.200E+12  0.0      28.21
----    Estimated
----    kcin=(1.000E+11/0.0/60.61)  
C2H4    +CH3O    =OXIRAN  +CH3                1.200E+12  0.0      60.61
----
---- Tsang, W. 1987. Uncetainty=5.0  
---- kcin=(3.171E+01/3.2/30.01)  [4.38x10-15(cm3/molecule s)/(T/298 K)3.20/-30015 (J/mole)/RT]
---- C2H4    +CH2OH   =CH3OH   +C2H3               3.171E+01  3.2      30.01
C2H4    +CH2OH   =CH3OH   +C2H3               1.585E+02  3.2      30.01
----
----
******************************************                             
****    23A.    CH3CHO REACTIONS                                       
******************************************                            
---- fall-off reaction
---- CEC 94, here values given only for p = 1 atm, k=(7.0E+15/0/341.7),
----         (750-1200K, dlog k= +-0.4)
CH3CHO  +M(1)    =CH3     +CHO     +M(1)      2.200E+15  0.0     342.8
                                    LOW       5.100E+12  0.000   131.4
                                    TROE   0.500     0.0     0.0     0.0
---- CEC 94, k=k1+k2=(4.095E+09/1.16/10.06),(300-2000K, dlog k=+-0.1 r. to +-0.4)
CH3CHO  +H       =CH3CO   +H2                 2.150E+09  1.16     10.0
CH3CHO  +H       =CH2CHO  +H2                 1.850E+09  1.16     10.0
---- CEC 94, k=k1+k2=(5.84E+12/0/7.57),(298-1500K, dlog k= +-0.05 r. to +-0.5)
CH3CHO  +O       =CH3CO   +OH                 5.600E+12  0.0       7.6
CH3CHO  +O       =CH2CHO  +OH                 2.400E+11  0.0       7.6
---- CEC 94, k=(3.000E+13/0/163.8),(600-1100K, dlog k = +-0.5 rising to +-1.0)
CH3CHO  +O2      =CH3CO   +HO2                4.000E+13  0.0     164.3
---- CEC 94, k=(2.35E+10/0.73/-4.66), (250-1200K, dlog k=+-0.1 rising to +-0.3)
---- main channel -> CH3CO +H2O, other CH2CHO + H2O
---- RAUL: Se incluye el canal paralelo
---- Taylor, P.H.; Rahman, M.S.; Arif, M.; Dellinger, B.; Marshall, P.
---- Kinetic and mechanistic studies of the reaction of hydroxyl radicals
---- with acetaldehyde over an extended temperature range
---- Symp. Int. Combust. Proc, 497 - 504, 1996 (CH2CHO+H2O)
---- 295 - 600 K, Transition State!.
CH3CHO  +OH      =CH3CO   +H2O                2.300E+10  0.73     -4.6
CH3CHO  +OH      =CH2CHO  +H2O                1.553E+06  2.20     4.18
---- CEC 94, k=(3.0E+12/0.0/49.9), (900-1200K, dlog k= +-0.7)
---- RAUL: Konnov, 1999
---- CH2CHO+H2O2, Borisov, A.A., Zamanskii, V.M., Konnov, A.A., and Skachkov, G.I
---- Sov. J. Chem. Phys., 1990, v.6, pp.748-755.
CH3CHO  +HO2     =CH3CO   +H2O2               3.100E+12  0.0      50.0
CH3CHO  +HO2     =CH2CHO  +H2O2               3.000E+13  0.0      62.7
---- S. MURIES .                                       
---- CH3CHO  +3CH2    =CH3CO   +CH3                2.500E+12  0.0      15.9 
---- S. MURIES SAYS WA 84...original k=(2.500E+12  0.0 15.9)
---- RAUL: NIST (experimental)
---- Bohland, T., Dobe, S., Temps, F., Wagner, H. Gg
---- Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons
---- in the temperature range 296 K - 707 K.
---- Ber. Bunsenges. Phys. Chem. 1985, v.89, p.1110
CH3CHO  +3CH2    =CH3CO   +CH3                1.660E+12  0.0     14.67
---- OK CEC 91                                                                  
---- CH3CHO  +CH3     =CH3CO   +CH4                2.000E-06  5.64     10.3 
---- CEC 94, k=(2.0E-06/5.60/10.3),(300-1250K, dlog k = +-0.3)
---- RAUL: Konnov 1999.
---- CH2CO+CH4. Berces, T. and Marta, F.
---- Reactions of methyl radicals with acetaldehyde and acetaldehyde-d1
---- II. BEBO calculations of the temperature dependence of the rate constants
---- Int. J. Chem. Kinet., 1976, v. 8, pp. 295-306.
CH3CHO  +CH3     =CH3CO   +CH4                2.050E-06  5.60     10.3
CH3CHO  +CH3     =CH2CHO  +CH4                1.580E-00  4.00    32.27
******************************************                      
****    24.   C2H5 REACTIONS                                     
******************************************                        
---- CEC 94, k_inf=(3.97E09/1.28/5.40), (200-1100K, dlog k=+-0.3)
----       k_0(HE)=(4.71E18/0.00/3.16), (300- 800K, dlog k=+-0.3),1.35e19
----       k_0(N2)=(2.79E18/0.00/3.16), (300- 800K, dlog k=+-0.3),6.98e18
----  Fcent(HE,N2)=(0.76/40/1025/0)   , (300- 800K, dFc = +- 0.1)
---- 3.970E+09  1.280     5.40
C2H4    +H       +M(1)    >C2H5    +M(1)      2.000E+09  1.280     5.40
                                    LOW       6.980E+18  0.000     3.20
                                    TROE   0.760    40.0  1025.0     0.0
---- CEC 94, k_inf=(8.20E13/0/166.86), (700-1100K, dlog k=+-0.3)
----     k_0(C2H6)=(1.02E18/0/139.68), (700- 900K, dlog k=+-0.3),3.41e17
----   Fcent(C2H6)=(0.75/97/1379/0)  , (700-1100K, dFc = +- 0.1)
---- (*) TODA ESTA ESTA!!!!!
---- RAUL: Feng, Y., Niiranen, J.T., Bencsura, A., Knyazev, V.D., and Gutman, D
---- Weak collision effects in the reaction C2H5 = C2H4 + H
---- J. Phys. Chem., 1993, v.97, pp. 871-880.
C2H5    +M(1)    >C2H4    +H       +M(1)      8.200E+13  0.000   166.80
                                    LOW       3.400E+17  0.000   139.60
                                    TROE   0.750    97.0  1379.0     0.0
---- OK CEC 89                                                                  
---- C2H5    +H       =CH3     +CH3                3.000E+13  0.0       0.0 
---- CEC 94, k = (3.61E+13/0/0), (300K-2000K, dlog k=+-0.3 at 300K rising to
----         +-0.7 at 2000K)
---- k_r=(3.01E+13/0/56.54), (1300-2500K, dlog k= +-0.6) 6!!
C2H5    +H       =CH3     +CH3                3.000E+13  0.0       0.0
---- 
---- CEC 94, (300-2500K, dlog k=+-0.3 from 300K to 1000K,+-0.5 from 1000K-2500K)
---- k=(6.62E+13/0/0), k2/k= 0.17+-0.2 at 300k (de acuerdo con Tsang, 1986)
---- RAUL: Konnov, 1999
---- (global Berkeley, Konnov: 1.324E+14)
---- Rxn additional (3),
---- Slagle, I.R., Sarzynski, D., Gutman, D., Miller, J.A., and Melius, C.F
---- Kinetics of the reaction between oxygen atoms and ethyl radicals
---- J. Chem. Soc. Faraday Trans. 2 1988, v.84, p.491. .
C2H5    +O       =CH3CHO  +H                  5.300E+13  0.0       0.0
C2H5    +O       =CH2O    +CH3                4.240E+13  0.0       0.0
C2H5    +O       =C2H4    +OH                 3.460E+13  0.0       0.0
---- CEC 94, k=(1.020E+10/0.0/-9.15), (600-1200K, dlog k = +-0.3)
---- RAUL: Atkinson, 1994.
---- Bozzelli, J.W.; Dean, A.M.
---- Chemical activation analysis of the reaction of C2H5 with O2
---- J. Phys. Chem. vol 97 p.3313. 1990 kcin=(2.562E+19/-2.77/8.27)    
---- GRI 3.0 kcin=(8.400E+11/0/16.08)   
---- C2H5    +O2      =C2H4    +HO2                8.400E+11  0.0      16.08
---- NIST 2000: Dobis, O.; Benson, S.W. Reaction of the ethyl radical with oxygen 
---- at millitorr pressures at 243-368 K and a study of the Cl + HO2, ethyl + HO2, and HO2 + HO2 reactions
---- J. Am. Chem. Soc. vol.115 p.8798 - 8809 1993.    
C2H5    +O2      =C2H4    +HO2                1.085E+07  0.0     -23.20 
---- Bozelli, J.W.; Dean, A.M
---- Chemical activation analysis of the reaction of C2H5+O2
---- J. Phys. Chem, 1990, 94, p.3313
C2H5    +O2      =C2H5O   +O                  1.155E+13 -0.2     117.2
---- RAUL:Se incluyen en la parte de baja!
---- NIST: Atkinson, Baulch...et al.
---- J. Phys. Chem. Ref. Data 1997, vol.26, p.521 - 1011
---- NOTA: Konnov la pone dependiente d ela presion!!!! de Wagner (experimental!)
---- C2H5    +O2      =C2H5O2                      4.690E+12  0.0       0.0
---- CEC 94, k=(1.14e+12/0/0), (300-800K, dlog k =+-0.4)
C2H5    +CH3     =C2H4    +CH4                1.140E+12  0.0       0.0
---- CEC 94, k=(1.450E+12/0.0/0.0),(300-1200, dlog k = +-0.4)
---- Incertainty:2.51
C2H5    +C2H5    =C2H4    +C2H6               1.400E+12  0.0       0.0
******************************************                            
****    30B.   C2H5O REACTIONS
******************************************
---- L BATT, INT. J. CHEM. KINET. 9, 977 (1979) NO REC CEC
---- C2H5O            =CH3CHO  +H                  2.510E+14  0.0      97.0
---- HEI 298-450
---- RAUL: Heicklen, J.
---- The decomposition of alkyl nitrites and the reactions of alkoxyl radicals
---- Adv. Photochem, vol.14, p.177, 1988.
C2H5O            =CH3CHO  +H                  2.000E+14  0.0      97.3
---- RAUL: Valores Experimentales: Caralp, F.; Devolder, P.; Fittschen, C.;
---- Gomez, N.; Hippler, H.; Mereau, R.; Rayez, M.T.; Striebel, F.; Viskolcz, B.;
---- The Thermal Unimolecular Decomposition Rate Constants of Ethoxy Radicals
---- Phys. Chem. Chem. Phys., vol.1, 2935 - 2944, 1999
---- kcin =(1.1x1013 (s-1) e(-70300 (J/mole)/RT)), (391, 491K, 60 Bar)
---- CEC 94, k=(8.000E+13/0/90.0), (300-600K, dlog k = +-1.0, est.)
---- Incertainty= 10
---- L Blatt,The Gas-Phase Decomposition of Alkoxy Radicals
---- Int. J. Chem. Kinet, vol. 11, p.977, 1979.
---- kcin =(1E+15*E(-90.628/RT) (+/-) 4.52 kJ/mol , (393, 433, 1 Bar)
C2H5O            =CH2O    +CH3                1.000E+15  0.0      90.6
---- S ZBARNIK, J HEIKLEN, REPORT AT THE 186TH AM. CHEM. SOC. NATL.
---- MEETING, WASHINGTON DC, 1983 NO REC CEC
---- C2H5O   +O2      =CH3CHO  +HO2                5.010E+12  0.0      16.7
---- CEC 94, k=(6.020E+10/0/6.9), (300-1000K, dlog k = +-0.3 rising to +-0.5 at 1000K)
---- RAUL: Atkinson, R: Atmospheric reactions of alkoxy and beta-hydroxyalkoxy radicals
---- Int. J. Chem. Kinet, vol.29. 1997. p.99-111
---- kcin = (5.99E+14/0.0/4.57)  (298- 600K)
---- Intermedio entre Gut/1982 y Har 1990   parece mejor!
C2H5O   +O2      =CH3CHO  +HO2                6.000E+10  0.0       7.0
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
---- NO REC CEC
---- C2H5O   +OH      =CH3CHO  +H2O                1.320E+12  0.0       0.0
---- Konnov 1998
---- Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C.
---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling
---- Combust.Sci. and Technol., 1994, v.102, pp.21-55.
C2H5O   +OH      =CH3CHO  +H2O                1.000E+14  0.0       0.0
---- SAME AS FOR CH3O
---- C2H5O   +H       =CH3CHO  +H2                 1.800E+13  0.0       0.0
---- Konnov 1998
---- Igual al anterior
C2H5O   +H       =CH3CHO  +H2                 1.000E+14  0.0       0.0
---- Konnov 1998
---- Igual a los anteriores
C2H5O   +O       =CH3CHO  +OH                 1.210E+14  0.0       0.0
******************************************
****    30C.   CH3CHOH REACTIONS
******************************************
----
----     H  H
----     |  |
----  H--C--C--OH ->  CH3CHOH 
----     |  |
----     H  @
---- 
----
---- SAME AS FOR CH2OH, OK WA 84 NO REC CEC
---- CH3CHOH          =CH3CHO  +H                  1.000E+14  0.0     105.0
---- RAUL:Natarajan, K.; Bhaskaran, K.A-
---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
---- kcin = (4.999E+13/0.0/91.459), Proc. Int. Symp. Shock Tubes Waves
---- vol 13, p.834. 1982  (1300K-1700K) (1.01-2.03Bar)
CH3CHOH          =CH3CHO  +H                  4.999E+13  0.0     91.46   
---- 
---- SAME AS FOR CH2OH, OK WA 84 NO REC CEC
---- CH3CHOH +H       =CH3CHO  +H2                 3.000E+13  0.0       0.0
---- RAUL:Edelbuttel-Einhaus, J.; Hoyermann, K.; Rohde, G.; Seeba, J.
---- The detection of the hydroxyethyl radical by REMPI/mass-spectrometry and
---- the application to the study of the reactions CH3CHOH + O and CH3CHOH + H
---- Symp. Int. Combust. Proc, vol. 24, p.661-668, 1992
CH3CHOH +H       =CH3CHO  +H2                 1.999E+13  0.0       0.0
---- 
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
CH3CHOH +OH      =CH3CHO  +H2O                1.510E+13  0.0       0.0
----
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
---- CH3CHOH +O       =CH3CHO  +OH                 1.200E+14  0.0       0.0
---- koriginal=( 1.200E+14 0.0 0.0)
---- RAUL: NIST, 2000, Grotheer, H.; Riekert, G.; Walter, D.; Just, Th.
---- Reactions of hydroxymethyl and hydroxyethyl radicals with molecular and atomic oxygen
---- Symp. Int. Combust. Proc, vol 22, p.963, 1989
CH3CHOH +O       =CH3CHO  +OH                 9.034E+13  0.0       0.0
---- 
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
---- CH3CHOH +O2      =CH3CHO  +HO2                1.200E+13  0.0       0.0
---- koriginal=(1.200E+13 0.0 0.0)
---- RAUL: NIST, Natarajan, K.; Bhaskaran, K.A.
---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
---- kcin = (9.998E+11/0.0/23.28), Proc. Int. Symp. Shock Tubes Waves (1300-1700)
CH3CHOH +O2      =CH3CHO  +HO2                9.998E+12  0.0      23.28
******************************************
****    30D.   CH2CH2OH REACTIONS
******************************************
---- BETA-DECOMP. ESTIMATED. NO REC CEC
---- Incluida en la parte de baja temperatura
---- CH2CH2OH         =C2H4    +OH                 1.000E+14  0.0     140.0
----
---- M BARTELS, K HOYERMANN, R SIEVERT, 19TH SYMP. COMB., 61, 1982
CH2CH2OH+H       =CH3CHO  +H2                 5.000E+13  0.0       0.0
---- 
******************************************
****     31.   C2H5OH REACTIONS
******************************************
---- DECOMP. W TSANG, INT. J. CHEM. KINET. 8, 193, 1976
---- C2H5OH           =CH3     +CH2OH              2.510E+16  0.0     353.0
---- Konnov 1998
C2H5OH           =CH3     +CH2OH              3.100E+15  0.0     337.2
C2H5OH           =C2H4    +H2O                1.000E+14  0.0     320.9
----
---- Konnov 1998
---- C2H5OH           =C2H5    +OH                 5.000E+16  0.0     381.6
---- 
---- Fagerstrom, K.; Lund, A.; Mahmoud, G.; Jodkowski, J.T.; Ratajczak, E. 
---- Kinetics of the gas-phase reaction between ethyl and hydroxyl radicals. Chem. Phys. Lett. vol.208 p.321-327 1993.
---- (200-400K) (0.25-1Bar) kcin=(7.709E+13{+/-9.998E+12}/0.0/0.0) Experimental  8.708  6.709E+13 
C2H5    +OH      =C2H5OH                      6.709E+13  0.0       0.0
---- 
---- R ATKINSON, INT. J. CHEM. KINET. 18, 555-68, 1986 NO REC CEC
C2H5OH  +OH      =CH3CHOH +H2O                5.250E+06  2.0       1.9
---- Natarajan, K.; Bhaskaran, K.A-
---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
---- Proc. Int. Symp. Shock Tubes Waves. vol 13, p.834. 1982.
---- (1300K-1700K) (1.01-2.03Bar)
---- kcin=(2.999E13/0.0/24.943)   [4.98x10-11 (cm3/molecule s) e-24943 (J/mole)/RT]
---- C2H5OH  +OH      =CH3CHOH +H2O                2.999E13  0.0     24.943 
---- 
---- ATKINSON, 1986
---- Ref: Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C.
---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling
---- Combust.Sci. and Technol., 1994, v.102, pp.21-55
C2H5OH  +OH      =C2H5O   +H2O                1.150E+06  2.0       3.8
C2H5OH  +OH      =CH2CH2OH+H2O                8.130E+06  2.0       2.5
----
---- Estimated:   
---- C2H5OH  +O       =CH3CHOH +OH                 7.940E+12  0.0      13.6
---- Herron, J.T. Evaluated chemical kinetic data for the reactions of atomic oxygen
---- O with saturated organic compounds in the gas phase
---- J. Phys. Chem. Ref. Data 1988, v.17, p.967.incer=1.5 (300-1000K0)
C2H5OH  +O       =CH3CHOH +OH                 6.000E+05 2.46      7.73
----
---- HH GROTHEER, FL NESBITT, RB KLEMM, J.PHYS. CHEM. 90, 2512, 1986
C2H5OH  +O       =C2H5O   +OH                 4.790E+13  0.0      28.7
---- 
---- Estimated  
---- C2H5OH  +O       =CH2CH2OH+OH                 1.000E+14  0.0      31.3
---- RAUL: koriginal=(1.000E+14/0.0/31.3)
---- Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., Rusakov, S.A.,
---- and Skachkov, G.I. High-temperature pyrolysis of ethanol
---- Sov. J. Chem. Phys., 1991, v.8, pp.121-141
C2H5OH  +O       =CH2CH2OH+OH                 2.000E+12  0.0      39.7
---- 
---- WK ADERS, HGG WAGNER, BER. BUNSENGES, PHYS. CHEM. 77, 712, 1973
---- NO REC CEC
---- kcin en la ref=(5.902E11/0/14.46)
C2H5OH  +H       =C2H5    +H2O                5.900E+11  0.0      14.4
----
---- kcin en la ref=(4.402E12/0/19.1)
C2H5OH  +H       =CH3CHOH +H2                 4.400E+12  0.0      19.1
----
---- From Konnov:  Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., Rusakov, S.A.,
---- and Skachkov, G.I. High-temperature pyrolysis of ethanol. Sov. J. Chem. Phys., 1991, v.8, pp.121-141.
---- kcin=(2.000E+12/0.0/39.71)  
C2H5OH  +H       =CH2CH2OH+H2                 2.000E+12  0.0     39.71
----
---- RAUL: Adicional, Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C
---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling
---- Combust.Sci. and Technol., 1994, v.102, pp.21-55.
C2H5OH  +H       =C2H5O   +H2                 1.760E+12  0.0      19.1
----
---- SAME AS FOR METHANOL 
---- C2H5OH  +HO2     =CH3CHOH +H2O2               6.300E+12  0.0      81.1
---- SAME AS FOR METHANOL NO REC CEC
---- k original=(6.300E+12 0.0 81.1)
---- RAUL: Konnov, 1999 Lit orig: Tan, Y., Dagaut, Ph.,.... 1994
C2H5OH  +HO2     =CH3CHOH +H2O2               2.000E+13  0.0      71.1
---- 
---- Konnov, 1999 Lit Orig: Borisov, A.A....1991
C2H5OH  +HO2     =CH2CH2OH+H2O2               1.000E+11  0.0      52.2
C2H5OH  +HO2     =C2H5O   +H2O2               1.000E+11  0.0      64.8
----
---- REACTION WITH CHO
C2H5OH  +CHO     =C2H5O   +CH2O               6.500E+09  0.0      57.2
----
---- P GRAY, AA HEROD, TRANS. FARADAY SOC. 64, 1568, 1968 NO REC CEC
---- Methyl radical reactions with ethanol and deuterated ethanols
---- kliterat=(3.981E11/0/40.57) incer=1.41 (403-523K)
---- kcin_Volker=(2.040E+11/0.0/36.40)  
C2H5OH  +CH3     =CH3CHOH +CH4                2.040E+11  0.0     36.40
----
---- Konnov, 1999
---- koriginal_Volker=(2.040E+11 0.0 36.4)
---- Borisov, A.A....1991
C2H5OH  +CH3     =CH2CH2OH+CH4                3.000E+00  4.0      43.8
---- 
---- P GRAY, AA HEROD, TRANS. FARADAY SOC. 64, 1568, 1968 NO REC CEC
---- Methyl radical reactions with ethanol and deuterated ethanols
---- kliterat=(7.950E10/0/39.32) incer=1.41 (403-523K)
C2H5OH  +CH3     =C2H5O   +CH4                7.490E+10  0.0      39.3
----
---- RAUL las siguientes 3 rxn no tienen referencia son iguales a Konnov!!!
---- SAME AS FOR METHANOL 
C2H5OH  +CH3O    =CH3CHOH +CH3OH              2.000E+11  0.0      29.3
C2H5OH  +CH2O    =C2H5O   +CH3O               1.530E+12  0.0     333.2
C2H5OH  +C2H5O   =C2H5OH  +CH3CHOH            2.000E+11  0.0      29.3
----              
---- RAUL: Rxn adicionales Konnov, 1999
C2H5OH  +O2      =CH2CH2OH+HO2                4.000E+13  0.0     212.76
C2H5OH  +O2      =CH3CHOH +HO2                4.000E+13  0.0     214.02
---- Tan, Y., Dagaut,...1994
C2H5OH  +O2      =C2H5O   +HO2                2.000E+13  0.0     234.0
----
******************************************
****    25.   C2H6 REACTIONS
******************************************
---- OK CEC 91 
---- C2H6    +H       =C2H5    +H2                 1.440E+09  1.5      31.1
---- CEC 94, k_r=(3.07/3.6/35.33), (700-1200K,
----         dlog k = +-0.2 at 700K rising to 0.6 at 1200K)
---- kcin=( 1.550E+09/1.5/31.1)
---- C2H6    +H       =C2H5    +H2                 1.550E+09  1.5      31.1
----
---- Da muy buenos resultados con esta !!!
---- GRI 3.0 Cohen, N.R. (1991) Int. J. Chem. Kin. vol23, p683. 
C2H6    +H       =C2H5    +H2                 1.150E+09  1.9      31.1
----
---- Esta reaccion da ERROR numerico
---- RAUL: NIST 2000. Back R. A. A search for a gas-phase free radical inversion displacement reaction at
---- a saturade carbon atom. Can. J. Chem. vol. 61. 96. 1983     
---- C2H6    +H       =CH4     +CH3                 5.406E+04  0.0      48.6 
----
---- RAUL: Mahmud, K.; Marshall, P.; Fontijn, A.
---- The reaction of O, atoms with ethane: An HTP kinetics study from 300 to 1270 K
---- J. Chem. Phys, vol.88, 1988, p. 2393 (experimental, 297-1297K)
---- Kcinetica=(1.391E09/(T/298)^6.5/1.147/)
---- C2H6+O=C2H5+OH  (1.150E-07/6.5/1.147)   
---- C2H6    +O       =C2H5    +OH                 1.150E-07  6.5     1.147
---- CEC 94, k=(1.0E+09/1.5/24.3),(300-1200K,dlog k= +-0.3 falling to +-0.15 at 1200K)
C2H6    +O       =C2H5    +OH                 0.900E+09  1.5      24.3
---- Miyoshi, A.; Ohmori, K.; Tsuchiya, K.; Matsui, H.Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes
---- C2H6    +O       =C2H5    +OH                 3.549E+06  2.4      24.3
----
---- Cohen, N. Int. J. Chem. Kinet. vol23. p397-417, 1991.  
---- C2H6    +OH      =C2H5    +H2O                3.984E+07  1.8     4.739
---- CEC 94, k=(7.23E+06/2.0/3.62),(250-2000K, dlog k = +-0.07 rising to +-0.15 at 2000K)
---- incertidumbre=1.41  (7.200E+06/2.0/3.6) (Multiplicado por 1.41= 1.015E+07)    
C2H6    +OH      =C2H5    +H2O                6.200E+06  2.0       3.6
---- Tully, F.P.; Droege, A.T.; Koszykowski, M.L.; Melius, C.F. Hydrogen-atom abstraction from alkanes by OH. 2. Ethane
---- J. Phys. Chem. vol.90 p.691 1986. (293-705K)(0.8 Bar) Experimental 
---- C2H6    +OH      =C2H5    +H2O                5.107E+06 2.06      3.57
---- 
---- OK CEC 89
---- C2H6    +HO2     =C2H5    +H2O2               1.700E+13  0.0      85.9
---- CEC 94, k=(1.325E+13/0/85.6),(500-1000K, dlog k= +-0.2 rising to +-0.3 at 1000K)
---- incertidumbre = 2   (1.330E+13/0.0/85.9) 
---- multiplico por 1
C2H6    +HO2     =C2H5    +H2O2               1.333E+13  0.0      85.6
---- 
---- C2H6    +HO2     =C2H5    +H2O2               1.895E+13  0.0      81.2
---- 
---- C2H6    +HO2     =C2H5    +H2O2               1.698E+13  0.0     83.00
---- CEC 94, k=(6.0E+13/0/217.0),(500-2000K, dlog k = +-0.05 rising to +-0.1 at 2000K)
---- Uncertainty = 10 !! 
---- Divido por 1 
C2H6    +O2      =C2H5    +HO2                6.000E+13  0.0     217.0
---- RAUL: Bohland, T., Dobe, S., Temps, F., and Wagner, H
---- Gg.Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons
---- in the temperature range 296 K- 707 K. Ber. Bunsenges. Phys. Chem. 1985, v.89, p.1110.
---- kcin=(6.500E+12 exp(-33.06/RT))
---- 22ND SYMP 1988   
C2H6    +3CH2    =C2H5    +CH3                2.200E+13  0.0      36.3
---- 
---- CEC 94, k=(1.51E-07/6/25.3),(300-1500K, dlog k = +-0.1 rising to +-0.2 at 1500K)
---- Uncertainty = 1.58  (1.500E-07/6.0/25.4) * 1.5   (2.370E-07)
---- C2H6    +CH3     =C2H5    +CH4                1.500E-07  6.0      25.3
----
---- Moller, W.; Mozzhukhin, E.; Wagner, H.Gg. High temperature reactions of CH3. 2. H-abstraction from alkanes
---- Ber. Bunsenges. Phys. Chem. vol.91. p660 1987. (1100-1400K) (0.4-0.93 Bar) Uncertainty=2.5 Absolute value measured directly!
---- kcin=(1.999E+13/0.0/56.54)  
C2H6    +CH3     =C2H5    +CH4                0.999E+13  0.0     56.54
---- 
---- Tsang 1986 kcin=(0.5491/4.0/34.67)    Uncertainty=3.0!!!
---- C2H6    +CH3     =C2H5    +CH4                5.491E-01  4.0     34.67
---- 
---- Additional reactions
---- CEC 94, k=(1.08E+14/0/-1.10), (200-700K, dlog k = +-1.0)
---- products: (C2H4+CH3),(C3H6+H)
---- RAUL, CEC, retomo valores de la bibliografia.
---- Experimental by: Berman, M.R.; Lin, M.C.
---- Chem. Phys, vol. 82. p.435. 1983
C2H6    +CH      =C2H4    +CH3                1.080E+14  0.0      -1.1
---- RAUL: Decomposition
---- GRI3.0= Stewart, P.H., Rothem, T., and Golden, D.M.
---- (1988) 22d Symposium (International) on Combustion, p. 943
---- k0=(1.99E+41 T^(-7.08) exp(-27.943 KJ/mol /RT)
---- kinf= 5.21E+17 T^(-0.99) exp(-6.604 KJ/mol /RT)
---- Fcent = (1-0.842) exp(-T/125) + 0.842 exp(-T/2219) + exp(-6882/T)
C2H5    +H       +M(3)    =C2H6    +M(3)      5.420E+12  0.0       0.0
                                    LOW       1.190E+27 -3.100     0.0
                                    TROE   0.842  125.0 2219.0  6882.0
---- N2= 1.0;  H2= 2.0;  H2O= 6.0; CH4=2.0; CO=1.5; CO2=2.0; C2H6=3.0; AR=0.7
---- 
---- RAUL NIST 2000,Hidaka Y. Shiba S, Takuma H. Suga M. Thermal decomposition of ethane in shock waves 
---- Int. Journal Chemi K. vol 17. p. 441 1985.    
---- T=1200-1700K P=1.72-2.53    
---- C2H6    +C2H3    =C2H4    +C2H5               1.499E+13  0.0      41.8  
---- 
---- Zhang, H-X.; Back, M.H. Rate constants for abstraction of hydrogen from ethylene
---- by methyl and ethyl radicals over the temperature range 650-770K. Int. J. Chem. Kinet. vol 22. p.21.00 1990.
---- (650-770K)(0.27-0.53 Bar) Uncertainty=1.58.
---- kcin=(1.578E+11/0.0/69.192)
C2H4    +C2H5    =C2H6    +C2H3               1.578E+11  0.0     69.192
----
----
---- RAUL: NIST 2000. Tsang 1986. 
---- Uncertainty= 3 kcin=(2.409E+11/0.0/29.68)    
C2H6    +CH3O    =CH3OH   +C2H5               2.409E+11  0.0      29.68
----
---- Todas estas no cambian mucho los resultados finales !!!!
---- RAUL Tsang 1986 
---- Uncertainty=3.0
---- Divido por 3
C2H6    +C2H     =C2H2    +C2H5               1.200E+12  0.0       0.0    
---- RAUL Tsang 1986
---- Uncertainty=3.0
---- Divido por 3
---- ACA 
---- C2H6    +C2H2    =C2H3    +C2H5               3.211E+11  0.0      19.2
---- RAUL Tsang 1986
---- Uncertainty=5.0
---- Divido por 5
---- C2H6    +CH3CO   =CH3CHO  +C2H5               3.612E+03  2.75     73.3
---- RAUL Tsang 1986
---- Uncertainty=5.0
---- Divido  por 5
C2H6    +CHO     =CH2O    +C2H5               9.376E+03  2.72     76.3
---- RAUL Tsang 1986
---- Uncertainty=3.0
---- Divido por 3  
C2H6    +CH3O2   =CH3O2H  +C2H5               9.836E+10  0.0      62.5
**********************************************************************
****
****      CE MECHANIMS 
****
******************************************                                      
****     31.   C3H3 REACTIONS                                                   
******************************************                                      
---- Consumption of C3H3                                                    
---- Fuente Konnov, 1999 sin referencia
C3H3    +O       >CO      +C2H3               3.800E+13  0.0       0.0          
C3H3    +O2      >HCCO    +CH2O               6.000E+12  0.0       0.0          
---- RAUL: Tan, Y., Dagaut, Ph.,... 1994....
---- k=(1.000E+13 0.0 0.0)
---- 89 MIL/BOW, (dlog k = 1.0)
C3H3    +OH      =C3H2    +H2O                2.000E+13  0.0       0.0
---- RAUL: Nueva, Slagle, I.R. and Gutman, D.
---- Kinetics of the reaction of C3H3 with molecular oxygen from 293-900 K.
---- 21st Int. Symp. on Combustion, 1988, p.875.(500-900K) (0-0.1Bar)
---- konnov kcin=(3.010E+14 0.0 12.00)
C3H3    +O2      =CH2CO   +CHO                3.010E+14  0.0     12.00
---- RAUL: Revizar, Quedan pendientes, Konnov 1999
---- C3H3+O>CO+C2H2+H k=(7.000E+13 0.0 0.0)
---- C3H3+O>C2H+HCO+H k=(7.000E+13 0.0 0.0)
---- Decomposition reactions: NIST, 2000
---- C3H3>C3H2+H k=(2.710E30/0/0)Deyerl, H.-J.; Fischer, I.; Chen, P
---- J. Chem. Phys. vol.111, p.3441-3448. 1999. Exp (298K, 1.5 Bar)
******************************************                                      
****     32.   C3H4 REACTIONS                                                   
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57              
******************************************                                      
C3H4    +O       =CH2O    +C2H2               0.100E+13  0.0       0.0          
C3H4    +O       =CHO     +C2H3               0.100E+13  0.0       0.0          
C3H4    +OH      =CH2O    +C2H3               0.100E+13  0.0       0.0          
C3H4    +OH      =CHO     +C2H4               0.100E+13  0.0       0.0          
---- RAUL: NIST, Herbrechtsmeier, P.
---- Reactions of O (3P) Atoms with Unsaturated C3-Hydrocarbons
---- Combust. Inst. European Symp.vol1. pag 13, 1973
C3H4    +O       =CO      +C2H4               7.829E+12  0.0     -6.69
---- RAUL: NIST, Adusei, G.Y.; Blue, A.S.; Fontijn, A
---- The O(3P) methylacetylene reaction over wide temperature and pressure ranges
---- J. Phys. Chem. vol.100, 16921 - 16924, 1996.TS, 300-2500K, 0.1-0.7 Bar
C3H4    +O       =OH      +C3H3               3.434E+04 2.16     20.20
---- RAUL: Pendiente, Kannov, 1999,
---- C3H4+OH=H2O+C3H3 k=(2E07/0/4.18) Miller, Melius 1992 Combustion and Flame
******************************************
C3H4    +M(1)    =H       +C3H3    +M(1)      0.100E+18  0.0     293.0
C3H4    +H       =CH3     +C2H2               0.200E+14  0.0      10.0
C3H4    +H       =H2      +C3H3               0.100E+13  0.0       6.3
C3H4    +C2H     =C2H2    +C3H3               0.100E+14  0.0       0.0
C3H4    +CH3     =C3H3    +CH4                0.200E+13  0.0      32.2
---- RAUL: Pendiente.
---- C3H4+H=CH3+C2H2, kcin=(1.987E11/(t/298)^2.5/4.18) NIST, Hidaka, 1989
---- C3H4+H=H2+C3H3, kcin=(2.000E+07/2.0/20.9) Konnov, 1999, from Marinov 1998
******************************************                                      
****     33.   C3H5 Reactions                                                   
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57              
******************************************                                      
---- Raul= Revizar, usada por Konnov!!!. Tsang, 1992,
---- Pyrolysis of 1,7-octadiene and the kinetic and thermodynamic
---- stability of allyl and 4-pentenyl radicals
---- J. Phys. Chem, vol. 96. p.8378-8384, 1992
---- kcin=(1.078E11/(T/298 K)^0.84/250.266/)
---- Uncertainty=10 expe, (300-1200K) (2.03-7.09 bar)
---- CEC 94, CH2CCH2, k_inif.=(1.5E+11/0.84/249.84), (800-1500K, dlog k = +-0.3)
C3H5             =C3H4    +H                  0.398E+14  0.0     293.1          
---- CEC 94, k=(1.81E+13/0/0), (300-1000K, dlog k = +-0.5)
---- Tsang, 1991, Uncertainty=3
C3H5    +H       =C3H4    +H2                 1.810E+13  0.0       0.0          
---- CEC 94, CH2CCH2, k=(1.02E+12/0/94.78), (600-1200K, dlog k=+-0.3 at 600K
----                  rising to +-0.5 at 1200K)
C3H5    +O2      =C3H4    +HO2                1.000E+12  0.0      94.7          
---- additional reactions
---- CEC 94, k=(6.02E+12/0/0), (300-1000K, dlog k = +-0.5)
---- Tsang, 1991, Uncertainty=3
C3H5    +OH      =C3H4    +H2O                6.000E+12  0.0       0.00
---- CEC 94, k_r=(1.93E+12/0/163.79), product: CH2=CHCH2
----         (600-1000K, dlog k=+-0.3 at 800K r. to +-0.5 at 1000K and 600K)
C3H6    +O2      =C3H5    +HO2                1.900E+12  0.0     163.80
---- CEC 94, k=(2.11E+11/0/0), (500-1200K, dlog k = +-0.5)
C3H5    +CH3     =C3H4    +CH4                2.100E+11  0.0       0.00
---- CEC 94, product: CH2CCH2, k=(6.02E+10/0/-1.10), (300-1000K, dlog k= +-0.7)
C3H5    +C3H5    =C3H6    +C3H4               6.020E+10  0.0      -1.10
---- CEC 94, product: CH3CH=CH, k=(6.02E+11/0/32.42), (300-600K, dlog k= +-0.5)
CH3     +C2H2    =C3H5                        6.000E+11  0.0      32.40
---- RAUL: CEC 94, Tsang, 1991.
---- product=CH2=C=CH2  k=(1.6E-12/0/66)  (500-1200K, dlog k= +-0.3)
C3H5    +C2H5    =C3H4    +C2H6               9.636E+11  0.0      0.548
---- RAUL: CEC 94, Tsang, 1991.
---- k=(4.3E-12/0/66)  (500-1200K, dlog k= +-0.4)
C3H5    +C2H5    =C3H6    +C2H4               2.589E+12  0.0      0.548
******************************************                                      
****     34.   C3H6 Reactions                                                
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57              
******************************************                                      
----     Decomposition                                                          
---- RAUL: Hidaka, Y.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H.
---- Shock tube and modeling study of propene pyrolysis
---- Int. J. Chem. Kinet, vol.24, p.761 - 780, 1992
---- 1200-1800K
C3H6             =C2H2    +CH4                2.108E+12  0.0    292.67
---- WJ Pitz, CK Westbrook, WM Proscia, FL Dryer, 22nd Symp Int Comb              
---- 831-43, 1984                                                   
---- kcin=(3.150E+15/0.0/359.0)   
---- C3H6             =C2H3    +CH3                3.150E+15  0.0     359.0
---- NIST Fahr, A.; Laufer, A.; Klein, R.; Braun, W. 
---- Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms
---- J. Phys. Chem. vol. 95. p.3218 - 3224. 1991   
---- 0.13 Bar 298K.  Experimental!!! kcin=(7.220E13/0.0/0.0)     
---- 91TSA, k=(1.1E+21/-1.2/408.856), (300-2500, delta k=3.0)
C3H6             =C2H3    +CH3                1.100E+21 -1.2     408.8
---- RAUL: Barbe, P.; Martin, R.; Perrin, D.; Scacchi, G
---- Kinetics and modeling of the thermal reaction of propene at 800 K.
---- Part I. Pure propene. Int. J. Chem. Kinet, vol 28. pag. 829-847. 1996
---- (762-811K)  (0.04-0.27 Bar)
C3H6             =C3H4    +H2                 3.017E+12  0.0    296.82
---- CEC 94, k_r=(k_a_inf.+k_b)=(1.69E+14/0/0), (300-1000K, +-0.2 at 300K
----         rising to +-0.5 at 1000K), k_a=(C3H6), k_b=(C2H3+CH3)
C3H6             =C3H5    +H                  1.000E+13  0.0     326.0
---- Reaction with H                                                        
---- CEC 94, k=(1.08E+05/2.4/79.40), attention welche Richtung
----         (300-1100K, dlog k = +-0.7 at 300K reducing to +-0.3 at 1100K)
---- (1.96) H       +C3H6    =C3H5    +H2                 0.500E+13  0.0       6.3          
---- Loser, U.; Scherzer, K.; Weber, K. 
---- Abschatzung kinetischer daten fur H-transferreaktionen mit hilfe der, bond strength-bond length (BSBL) "Methode"
---- Z. Phys. Chem. (Leipzig). vol.270. p237. 1989. kcin=(6.444E+11/0.0/18.6)  Theorical!!    
---- Tsang 1992 kcin=(1.701E+05/2.5/10.39)
---- (2.03) H       +C3H6    =C3H5    +H2                 1.701E+05  2.5      10.39       
---- Original: 
H       +C3H6    =C3H5    +H2                 6.444E+11  0.0      18.60   
---- 
---- NIST 2000 Hidaka, Y.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H.
---- Shock tube and modeling study of propene pyrolysis
---- Int. J. Chem. Kinet. vol 24. p.761-780 1992 (1200-1800K)  
H       +C3H6    =C2H4    +CH3                2.610E+08  1.5     8.398
---- Reaction with O                                                        
C3H6    +O       =C2H4    +CH2O               5.900E+13  0.0      21.0          
---- 91 TSA, k=(1.21E+11/0.7/37.49), (300-2500K, delta=3)
C3H6    +O       =C2H5    +CHO                3.600E+12  0.0       0.0          
C3H6    +O       =CH3     +CH3CO              5.000E+12  0.0       2.5          
---- Tsang 1988   
C3H6    +O       =C3H5    +OH                 1.741E+11  0.7     24.61    
---- Reaction with OH                                                       
---- RAUL: Tan, Y., Dagaut...1994
---- kcin=(8.000E+12 ) No tengo mas sugerencias !  
---- C3H6    +OH      =C2H5    +CH2O               7.900E+12  0.0       0.0          
---- Kcin_origi=(5.100E+12)    
---- RAUL: Tan, Y., Dagaut...1994
---- kcin=(3.400E+11)
C3H6    +OH      =CH3     +CH3CHO             3.400E+11  0.0       0.0          
---- RAUL: Original, kcin=(4.000E+12 0.0 0.0)
---- Baldwin, R.R.; Hisham, M.W.M.; Walker, R.W. kcin=(7.588E+12)    
---- Tsang, 1991 (unicertainty=1.2) kcin=(3.119E+06/2.0/1.247)    
C3H6    +OH      =C3H5    +H2O                2.599E+06  2.0     1.247          
---- C3H6    +OH      =C3H5    +H2O                4.000E+12  0.0       0.0    
---- C3H6    +OH      =C3H5    +H2O                7.588E+12  0.0       0.0  
---- REACTION WITH MISC.                                                    
---- CEC 94, k_r=(3.97E+01/3.4/97.02), (300-1200K, dlog k = +-0.4)
---- Literatura Original :  
---- CH3     +C3H6    =CH4     +C3H5               8.910E+08  0.0      35.6
---- CH4     +C3H5    =CH3     +C3H6               3.970E+01  3.4     97.02    
---- Kinsman, A.C.; Roscoe, J.M. A kinetic analysis of the photolysis of mixtures of acetone and propylene
---- Int. J. Chem. Kinet. vol.26. p.191 - 200. 1994.(296-770K)     
---- 1.396E+11 0.0     36.50    
CH3     +C3H6    =CH4     +C3H5               1.396E+11  0.0     36.50    
---- 
---- CEC 94, k_r=(2.35E+02/3.3/83.06), (300-1200K, dlog k = +-0.4)
C3H6    +C2H5    =C3H5    +C2H6               1.000E+09  0.0      38.5 
---- Tsang Uncertainty = 5.0
---- C3H5    +H2O2    =C3H6    +HO2                3.912E+05 2.05      56.8  
******************************************                                      
****     35a.   n-C3H7 Reactions                                                
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57              
******************************************                                      
----     Decomposition                                                          
----
---- Mintz, K.J.; Le Roy, D.J. Kinetics of radical reactions in sodium diffusion flames
---- Can. J. Chem. vol.56 p.941 1978. Experimental: 609 - 648 K 0.03 Bar.
---- kcin=(5.040E+12/0.0/116.4)
---- N-C3H7  =CH3     +C2H4                        5.040E+12  0.0     116.4
----
---- kcin_orig=(0.960E+14/0.0/129.8)    
---- N-C3H7           =CH3     +C2H4               9.600E+13  0.0     129.8
----
---- Bencsura, A.; Knyazev, V.D.; Xing, S-B.; Slagle, I.R.; Gutman, D.
---- kcin=(1.228E+13/-0.1/126.4)
---- N-C3H7           =CH3     +C2H4               1.228E+14  0.0     126.4          
----
---- 88 TSA, k=(1.26E+13/0/127.08), (300-2500K, delta=1.2)
---- / 1.2 (1.260E+13)    
N-C3H7           =CH3     +C2H4               1.050E+13  0.0     127.08
----
---- GRI 3.0 Con la anterior literatura desarrolla: M( 6)
---- CH3     +C2H4    +M( 6)   =N-C3H7  +M( 6)     2.550E+06  1.60   23.820
----                                     LOW       3.000E+63 -14.6   75.950
----                                     TROE   0.1874  277.0 8748   7891.0
----
----    ko = 3.00E+63 T^(-14.60) exp( - 18170 cal/mol /RT) cm6/mol^2/s
----    kinf = 2.55E+06 T^1.60 exp(- 5700 cal/mol /RT) cm3/mol/s
----    Fcent = (1-0.1874) exp(- T / 277) + 0.1874 exp(- T / 8748) + exp(- 7891 / T)
----    N2      1.0
----    H2      2.0
----    H2O     6.0
----    CH4     2.0
----    CO      1.5
----    CO2     2.0
----    C2H6    3.0
----    AR      0.7
----
---- 84 WAR, k=(1.0E+14/0/156.0), (500-1000K, delta=3.16)
---- N-C3H7           =H       +C3H6               1.250E+14  0.0     154.9          
---- N-C3H7           =H       +C3H6               1.000E+14  0.0     156.0  
---- Mintz, K.J.; Le Roy, D.J.
---- Kinetics of radical reactions in sodium diffusion flames Can. J. Chem. vol.56 p.941. 1978 
---- (567 - 609) K (0 - 0.02 ) Bar Experimental  kcin=(1.110E+11/0.0/112.2)   
---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions
---- J. Phys. Chem. vol89. p.4600. 1985. kcin=(1.260E+13/0.0/161.30)       
N-C3H7           =H       +C3H6               1.260E+13  0.0     161.3
---- 
---- Tsang 1989 
---- Uncertainty = 2.0 
N-C3H7  +H       =C3H6    +H2                 1.813E+12  0.0        0.0     
---- Uncertainty = 3.0 
N-C3H7  +OH      =C3H6    +H2O                2.409E+13  0.0        0.0
---- 
---- NIST 2000 : Slagle I.R.; Park, J.-Y.; Gutman, D.
---- Experimental investigation of the kinetics and mechanism of the reaction of n-propyl radicals with molecular oxygen
---- from 297 to 635 K. Symp. Int. Combust. Proc. vol 20. p.733. 1985.    
---- kcin=(5.99E-14/(+,- 2.99E-14 cm3 molecule s )    
---- kcin=(3.6077E+10)    
----     Reaction with O2                                                       
---- koriginal_=(0.100E+13/0.0/20.9)   
---- M. Cathonnet J.C. Boettner and H James Experimantal Study and numrical Modeling of high temperature oxidation of
---- propane and n-butane. 18 Symposium 1981. p.903. kcin=(0.100E+13/0.0/24.24).     
---- N-C3H7  +O2      =C3H6    +HO2                0.100E+13  0.0      20.9           
---- Slagle, I.R.; Park, J.-Y.; Gutman, D. Symp. Int. Combust. Proc.20. p.733 1985  Experimental!
---- N-C3H7  +O2      =C3H6    +HO2                3.607E+10  0.0       0.0       
---- Tsang    
N-C3H7  +O2      =C3H6    +HO2                9.034E+10  0.0       0.0
---- NIST 2000: Baker, R.R.; Baldwin, R.R.; Walker, R.W.
---- The Use of the H2 + O2 Reaction in Determining the Velocity Constants
---- of Elementary Reactions in Hydrocarbon Oxidation. Symp. Int. Combust. Proc.
---- vol. 13, p.291. 1971. Uncertainty=1.38. 753K.
---- ****No se producen cambios al incluirala****
N-C3H7  +O2      =C2H5CHO +OH                 1.102E+08  0.0       0.0
---- NIST 2000: Tsang 1986
---- Uncertainty = 3.0
N-C3H7  +CH2OH   =CH3OH   +C3H6               4.818E+11  0.0       0.0
---- x 3.0   (1.210E+12)    
N-C3H7  +C2H3    =C2H4    +C3H6               3.630E+12  0.0       0.0 
---- x 3.0 ( 0.253E+00)  
N-C3H7  +C2H6    =C2H5    +C3H8               0.759E+00 3.82      37.8   
---- NIST 2000: Tsang, 1988
---- Uncertainty= 1.4
N-C3H7  +C2H5    =C2H4    +C3H8               1.150E+12  0.0       0.0
---- x 1.4 (1.452E+12)    
N-C3H7  +C2H5    =C2H6    +C3H6               2.033E+12  0.0       0.0
---- RAUL: Tsang, 1988 Incert=1.7
---- N-C3H7+CH3->CH4+C3H6
---- k=(3.07E-12/(T/298)^-0.32/0) kcin=(1.144E+13/-0.32/0.0) x1.7 = 1.944  
N-C3H7  +CH3     =CH4     +C3H6               1.944E+13 -0.32      0.0
N-C3H7  +1CH2    =CH3     +C3H6               1.812E+12  0.00      0.0
---- Uncertainty=3.0   
---- x 3.0 (6.023E+12)  
N-C3H7  +C2H     =C2H2    +C3H6               1.806E+13  0.00      0.0
---- NIST Thynne, J.C.J. Reactions of alkyl radicals. Part 2.-Methyl radical
---- photosensitized decomposition of n-propyl and isopropyl formates  
---- Trans. Faraday Soc. vol58. p. 1394. 1962. (347-455K)  (0.07-0.17Bar)       
---- No se producen cambios al incluirala ****
N-C3H7  +N-C3H7  =C3H6    +C3H8               1.409E+13   0.0      0.0
******************************************                                      
****     35b.   i-C3H7 Reactions                                                
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57              
******************************************                                      
----     Decomposition                                                          
---- Originial kcin=( 0.630E+14  0.0     154.5)    
---- Konnov 1999: kcin=(5.704E+09/1.16/3.653) (H+C3H6->I-C3H7) !!!! 
---- Seakins,P.W., Robertson,S.H., Pilling,M.J., Slagle,I.R., Gmurczyk,G.W., Bencsura,A., Gutman,D., and Tsang,W. Kinetics
---- of the unimolecular decomposition of iso-C3H7: weak collision effects in helium, argon, and nitrogen. J. Phys. Chem.
---- 1993, v.97, pp.4450-4458.kcin=(3.912E+07/1.83/147.99)     
---- 2.03 I-C3H7           =H       +C3H6               3.912E+07 1.83     147.9          
---- 2.19 I-C3H7           =H       +C3H6               6.300E+13  0.0   154.500
---- 2.31 
H       +C3H6    =I-C3H7                      5.704E+09 1.16     3.653   
---- 
---- kcin_ori=(0.200E+11/0.0/123.5)    
---- Konar R.S.; Marshall, R.M.; Purnell, J.H. kcin=(1.000E+12/0.0/144.67)
---- Initiation of isobutane pyrolysis. Trans. Faraday Soc. vol 64. p405-413 1968 (experimental)  
---- (713-814K)  (0.07-0.2 Bar)      
I-C3H7           =CH3     +C2H4               0.200E+11  0.0     123.5          
----     Reaction with O2                                                       
---- Konnov 1999: 
---- Gulati, S.K. and Walker, R.W. Arrhenius parameters for the reaction i-C3H7 + O2 -> C3H6 + HO2. J. Chem. Soc. Faraday
---- Trans. 2 1988, v.84, p.401. 
---- kcin=(2.754E10/0/-8.9911)  
---- CEC 94, k=(1.990E+10/0/-10.73), (600-800K, dlog k = +-0.5)
---- 2.317 I-C3H7  +O2      =C3H6    +HO2                0.100E+13  0.0      20.9          
---- 2.317 I-C3H7  +O2      =C3H6    +HO2                2.754E+10  0.0     -8.99
---- x 1.3
I-C3H7  +O2      =C3H6    +HO2                2.587E+10  0.0    -10.73     
---- NIST 2000: Tsang, 1988
---- Uncertainty= 1.8
---- kcin_orig=(1.844E+13/-0.35/0.0)   
I-C3H7  +C2H5    =C2H4    +C3H8               1.024E+13-0.35       0.0
---- x 1.8 
I-C3H7  +C2H5    =C2H6    +C3H6               4.140E+13-0.35       0.0
---- NIST 2000: Tsang 1986
---- Uncertainty = 3.0
---- x 3.0 (0.843E+00)  2.529E+00 36.5    
I-C3H7  +C2H6    =C2H5    +C3H8               2.529E+00  4.2      35.5
---- Da error numerico C2H5    +C3H8    =I-C3H7  +C2H6               1.207E+00  3.4      31.2   
---- I-C3H7  +C2H6    =C2H5    +C3H8               9.998E+10  0.0      51.04         
---- RAUL: Rexizar: Tsang, 1988 Incer= 1.5
---- I-C3H7+CH3->CH4+C3H6
---- k=(4.529E12/(T/298)^0.68/0)
I-C3H7  +1CH2    =CH3     +C3H6               5.010E+13  0.0       0.0    
I-C3H7  +CH3     =CH4     +C3H6               9.409E+10 -0.68      0.0
---- RAUL: NIST 2000 Tsang 1988
---- Uncertainty= 5.0
I-C3H7  +CH2OH   =CH3OH   +C3H6               2.891E+12  0.0       0.0
---- RAUL: NIST 2000 Tsang 1988
---- Uncertainty= 10.0
I-C3H7  +I-C3H7  =C3H8    +C3H6               2.115E+14 -0.70      0.0
I-C3H7  +N-C3H7  =C3H8    +C3H6               5.131E+13 -0.35      0.0
******************************************                                      
******************************************                                      
****     39.   C3H8 Reactions                                                   
******************************************                                      
---- CEC 94, k_inf=(1.10E17/0/353.10), (700-2000K, dlog k=+-0.3)  Factor=2 
----       k_0(AR)=(7.83E18/0/271.87), (700-2000K, dlog k=+-0.5), Factor=3.16 7.530E+18 
----     Fcent(AR)=(0.76/1946/38/0)  , (700-2000K, dFc = +- 0.2)  Factor=1.58
C3H8    +M(1)    =CH3     +C2H5    +M(1)      0.500E+17  0.000   352.80
                                    LOW       2.830E+18  0.000   271.87
                                    TROE   0.760  1946.0    38.0     0.0
---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions
---- J. Phys. Chem vol.89. p.4600. 1985.
---- kcin_normal=(1.58E16/0.0/408.241)    
---- kcin_iso=(6.31E+15/0.0/396.600)
C3H8    =H       +N-C3H7                      1.580E+16    0.0     408.24 
C3H8    =H       +I-C3H7                      6.310E+15    0.0     396.6
---- 
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200                            
---- H       +C3H8    =H2      +N-C3H7             1.300E+14    0.0      40.6        
---- 
---- Hidaka, Y.; Oki, T.; Kawano, H. Thermal decomposition of propane in shock waves. Int. J. Chem. Kinet
---- vol.21 p.689. 1989. ( 1.52 - 2.64 Bar)( 1100 - 1450 K) (Theorical value)  
---- kcin=(9.275E+13/0.0/33.507)    
---- H       +C3H8    =H2      +N-C3H7             1.700E+14    0.0    30.507
---- H       +C3H8    =H2      +N-C3H7             9.275E+13    0.0    33.507 
---- 
---- Tsang 1988  kcin=(1.336E+06/2.54/28.24)  Uncertainty=3.0
---- H       +C3H8    =H2      +N-C3H7             1.446E+06   2.54     28.24   
---- Baldwin, R.F.; Walker, R.W. 1979 Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals +
---- Alkanes. J. Chem. Soc. Faraday Trans. 1: vol. 75. p.140. 1979.
H       +C3H8    =H2      +N-C3H7             1.319E+14    0.0      39.24
---- 
---- CEC 94, k=(7.83E+00/3.28/36.25), (300-1200K, dlog k = +-0.5)  
H2      +I-C3H7  =H       +C3H8               2.474E+01   3.28      36.25
---- Tsang 1988 kcin=(1.305E+06/2.4/18.708). Error numerico     
---- Hidaka, Y.; Oki, T.; Kawano, H
---- Thermal decomposition of propane in shock waves
---- Int. J. Chem. Kinet. vol 21. 689 1989. kcin=(3.101E+13/0.0/33.50)i
---- (1100-1450)K ; (1.52-2.64)Bar    
---- NIST 2000: Baldwin, R.F.; Walker, R.W.
---- Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + Alkanes
---- J. Chem. Soc. Faraday Trans. 1: vol 75. p 140 1979. (753-773K) 
---- kcin=(9.817E+13/0.0/33.25)      
---- H       +C3H8    =H2      +I-C3H7             1.000E+14    0.0      34.9
---- 
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200                            
---- C3H8    +O       =N-C3H7  +OH                 3.000E+13    0.0      24.1        
---- C3H8    +O       =I-C3H7  +OH                 2.600E+13    0.0      18.7        
---- Cohen 1986.     
---- kcin_normal=(3.715E+06/2.4/23.03) 
---- kcin_iso=(5.500E+05/2.5/13.14)        
---- C3H8    +O       =N-C3H7  +OH                 3.715E+06    2.4      23.03  
---- C3H8    +O       =I-C3H7  +OH                 5.500E+05    2.5      13.14  
---- Tsang 1988     
---- kcin_normal=(1.930E+05/2.68/15.548)
---- kcin_iso=(4.774E+05/2.71/8.813)        
C3H8    +O       =N-C3H7  +OH                 1.930E+05   2.68     15.548   
C3H8    +O       =I-C3H7  +OH                 4.774E+05   2.71      8.813
---- 
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200                            
---- kcin=(3.700E+12/0.0/6.9)            
---- C3H8    +OH      =N-C3H7  +H2O                3.700E+12    0.0     6.90
---- NIST Hu, W-P.; Rossi, I.; Corchado, J.C.; Truhlar, D.G.
---- Molecular modeling of combustion kinetics. The abstraction of primary and secondary hydrogens by hydroxyl radical
---- J. Phys. Chem. A: vol 101 p.6911 - 6921. 1997  kcin=(2.282E+12/0.0/10.89)   (295-854K) TST     
C3H8    +OH      =N-C3H7  +H2O                2.280E+12    0.0    10.89 
---- NIST 2000: Cohen N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH +
---- alkane reactions Int. J. Chem. Kinet. vol 23. p. 397 - 417. 1991.
---- kcin=(3.16E+07/1.8/3.908)    
---- C3H8    +OH      =N-C3H7  +H2O                3.160E+07    1.8     3.908               
---- 
---- Atkinson,R.Estimations of OH radical rate constants from H-atom abstraction from C-H and O-H bonds over the temperature 
---- range 250-1000K. Int. J. Chem. Kinet. vol.18, p.555, 1986 
---- C3H8    +OH      =N-C3H7  +H2O                5.391E+06    2.0    1.887
-----                   
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200
---- kcin=(2.800E+12/0.0/3.6)   
C3H8    +OH      =I-C3H7  +H2O                2.800E+12    0.0     3.600
---- NIST 2000 Cohen 1991 kcin=(7.060E+06/1.9/0.664)     
---- NIST Hu, W-P.; Rossi, I.; Corchado, J.C.; Truhlar, D.G. kcin=(5.282E+12/0.0/8.156)   
---- Atkinson, 1986 kcin=( 2.604E+06/2.0/1.937)     
---- C3H8    +OH      =I-C3H7  +H2O                2.604E+06    2.0     1.937
----                               
---- RAUL: Tsang, 1988 Reaccion directa
---- kcin normal=(4.76E04/2.6/68.92)
---- kcin iso=(9.64E03/2.6/58.20)
C3H8    +HO2     =N-C3H7  +H2O2               4.760E+03    2.6      68.92      
C3H8    +HO2     =I-C3H7  +H2O2               9.640E+03    2.6      58.20  
----
---- C3H8    +HO2     =N-C3H7  +H2O2               1.140E+13    0.0      81.2        
---- N-C3H7  +H2O2    >C3H8    +HO2                0.233E+13    0.0      41.1        
---- C3H8    +HO2     =I-C3H7  +H2O2               3.400E+12    0.0      71.2        
---- I-C3H7  +H2O2    >C3H8    +HO2                0.416E+12    0.0      31.1        
---- 
---- OK WA 84                                                                   
---- CH3     +C3H8    >CH4     +N-C3H7             0.400E+12    0.0      39.8        
---- CH4     +N-C3H7  >CH3     +C3H8               0.312E+13    0.0      68.9        
---- Tsang kcin=(0.903E+00/3.96/29.93) Uncertainty= 1.5      
---- Cuando se utiliza 1.13 cae el c3h8 y aumenta el ch4
---- CH3     +C3H8    =CH4     +N-C3H7             0.903E+00   3.96     29.93
---- NIST 2000: Mintz, K.J.; Le Roy, D.J.
---- Kinetics of radical reactions in sodium diffusion flames
---- Can. J. Chem. vol. 56. p. 941. 1978. kcin=(4.523E+13/0.0/62.44)    
CH3     +C3H8    =CH4     +N-C3H7             4.523E+13   0.00     62.44
---- OK WA 84
---- CH3     +C3H8    >CH4     +I-C3H7             0.130E+13    0.0      48.6        
---- CH4     +I-C3H7  >CH3     +C3H8               0.101E+14    0.0      77.7        
---- Tsang kcin=(1.506E+00/3.46/22.95) Uncertainty = 1.5    
---- Walker R.W. "reaction Kinetics" vol 1. p.161 S.P.R. Chemical Society 1975.     
---- kcin-(6.600E+11/0.0/42.218)   
---- Hidaka, Y.; Oki, T.; Kawano, H. Thermal decomposition of propane in shock waves
---- Int. J. Chem. Kinet.. vol 21. p. 689. 1989. kcin=(1.198E+12/0.0/43.07)
---- (1100 - 1450 K) (1.52 - 2.64 Bar) Buen camino !!!       
CH3     +C3H8    =CH4     +I-C3H7             2.259E+00   3.46     22.95        
---- CH3     +C3H8    =CH4     +I-C3H7             1.198E+12    0.0     42.07
----
---- OK WA 84.                                                  
C3H8    +O2      >N-C3H7  +HO2                2.520E+13    0.0     205.2        
N-C3H7  +HO2     >C3H8    +O2                 0.208E+13    0.0       0.0        
---- C3H8    +O2      =N-C3H7  +HO2                3.969E+13    0.0     212.85   
C3H8    +O2      >I-C3H7  +HO2                2.000E+13    0.0     199.3        
I-C3H7  +HO2     >C3H8    +O2                 0.208E+13    0.0       0.0        
---- C3H8    +O2      =I-C3H7  +HO2                3.969E+13    0.0     199.5   
---- 
---- 22ND SYMP                                                                  
C3H8    +CH3O    >N-C3H7  +CH3OH              0.300E+12    0.0      29.3        
N-C3H7  +CH3OH   >C3H8    +CH3O               0.122E+11    0.0      38.5        
C3H8    +CH3O    >I-C3H7  +CH3OH              0.300E+12    0.0      29.3        
I-C3H7  +CH3OH   >C3H8    +CH3O               0.122E+11    0.0      38.5        
----
---- RAUL: Tsang, 1988
---- Uncertainty = 3    
C3H8    +CHO     =N-C3H7  +CH2O               2.046E+05    2.5     77.16
C3H8    +CHO     =I-C3H7  +CH2O               1.085E+07    1.9     71.17
----
C3H8    +3CH2    =N-C3H7  +CH3                0.903E+00   3.65     29.93
C3H8    +3CH2    =I-C3H7  +CH3                1.506E+00   3.46     31.26   
----
C3H8    +CH3CO   =N-C3H7  +CH3CHO             4.200E+04   2.60     73.91    
C3H8    +CH3CO   =I-C3H7  +CH3CHO             5.303E+06   2.00     67.93  
----
C3H8    +CH3O2   =N-C3H7  +CH3O2H             6.023E+12    0.0     81.06  
C3H8    +CH3O2   =I-C3H7  +CH3O2H             1.987E+12    0.0     71.33               
---- Uncertainty = 5.0  
C3H8    +CH2OH   =N-C3H7  +CH3OH              1.985E+02   2.95     58.41
C3H8    +CH2OH   =I-C3H7  +CH3OH              6.021E+01   2.95     50.13 
----   
----  
---- Tsang 1991
C3H8    +C3H5    =C3H6    +I-C3H7             7.869E+01     3.3    75.99
C3H8    +C3H5    =C3H6    +N-C3H7             2.352E+02     3.3    83.09
---- Loser, U.; Scherzer, K.; Weber, K. 
---- Abschatzung kinetischer daten fur H-transferreaktionen mit hilfe der, bond strength-bond length (BSBL) "Methode"
---- Z. Phys. Chem. (Leipzig) vol. 270 p.237 1989  (790 - 810k) kcin=(7.227E+11/0.0/69.17)   
---- Consumen C3H6 !!!! 
---- C3H8    +C3H5    =C3H6    +N-C3H7             7.227E+11     0.0    69.17   
---- C3H8    +C3H5    =C3H6    +I-C3H7             3.469E+11     0.0    56.20     
******************************
****                         *
****  4. C4 MECHANISM        *
****                         *
******************************
****
******************************************
****     40.   C4H2 Reactions
******************************************
---- additional reactions
---- 86MIT/NAV, (210-423K,D,1.0)
C4H2    +O       =C3H2    +CO                 7.890E+12    0.0       5.64
---- 84PER, (296-688K,D/U,0.3)
C4H2    +OH      =C3H2    +CHO                6.680E+12    0.0      -1.71
******************************************                                      
****     40.   C4H6 Reactions                                                   
**** A CHAKIR, M CATHONET, JC BOETER, F GAILLARD, COMBUST. SCI. & TECH.         
**** 1989, VOL. 65, PP 207-230                                                  
******************************************                                      
----     Decomposition                                                          
C4H6             =C2H3    +C2H3               0.403E+20 -1.0     411.0          
----     REACTION WITH H                                                        
---- (*)C2H3    +C2H4    =C4H6    +H                  0.100E+12  0.0      30.5          
----
---- 2003
---- kcin=(1.300E-13/0/0) -> kcin=(7.830E+10/0/0)
----                              (+,-) 10 !!!!
C2H4    +C2H3    =C4H6    +H                  7.830E+10  0.0      0.000
----
----     Reaction with O                                                        
C4H6    +O       =C2H4    +CH2CO              0.100E+13  0.0       0.0          
C4H6    +O       =CH2O    +C3H4               0.100E+13  0.0       0.0          
----     Reaction with OH                                                       
C4H6    +OH      =C2H5    +CH2CO              0.100E+13  0.0       0.0          
C4H6    +OH      =CH2O    +C3H5               0.200E+13  0.0       0.0          
C4H6    +OH      =C2H3    +CH3CHO             0.500E+13  0.0       0.0          
---- RAUL: Adicionales, NIST (Butino, 1-3 Butadieno)
---- Butino -> CH3+C3H3 Dean, A.M.; J. Phys. Chem.,vol.89, p.4600, 1985
---- kcin=(3.017E09/0/316.781) (300-2500K)
---- 1-3 -> C2H4+C2H2 Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Oshita, H.; Kawano, H.
---- Thermal isomerization and decomposition of 2-butyne in shock waves
---- J. Phys. Chem, vol. 97, p.10977 - 10983, 1993 (1100 - 1600K)
---- kcin=(6.023E09/0/313.456)
******************************************                                      
****     41.   C4H7 Reactions                                                   
****           OK CATHONET 89                                                             
******************************************                                      
----     Decomposition                                                          
C4H7             =C4H6    +H                  0.120E+15  0.0     206.4          
C4H7             =C2H4    +C2H3               0.100E+12  0.0     154.9          
----     Reaction with H                                                        
H       +C4H7    =C4H6    +H2                 0.316E+13  0.0       0.0          
----     Reaction with O2                                                       
C4H7    +O2      =C4H6    +HO2                0.100E+12  0.0       0.0          
----     REACTION WITH ITSELF                                                   
C4H7    +C4H7    =C4H6    +1-C4H8             3.160E+12  0.0       0.0          
---- Cathonnet 1981 
C4H7    +C4H7    =C4H6    +2-C4H8             1.600E+12  0.0      41.8   
----     REACTION WITH CH3                                                      
C4H7    +CH3     =C4H6    +CH4                1.000E+13  0.0       0.0          
----     REACTION WITH C2H3                                                     
C4H7    +C2H3    =C4H6    +C2H4               4.000E+12  0.0       0.0          
----     REACTION WITH C2H5                                                     
C4H7    +C2H5    =C4H6    +C2H6               4.000E+12  0.0       0.0          
C4H7    +C2H5    =1-C4H8  +C2H4               5.000E+11  0.0       0.0          
C4H7    +C2H5    =2-C4H8  +C2H4               5.000E+11  0.0       0.0          
C4H7    +C2H5    =C-2-C4H8+C2H4               5.000E+11  0.0       0.0          
----     REACTION WITH C3H5                                                     
C4H7    +C3H5    =C4H6    +C3H6               4.000E+13  0.0       0.0          
******************************************                                      
****     42.   1-C4H8 Reactions                                                 
**** OK CATHONET 89                                                             
******************************************                                      
----     ISOMERIZATION                                                          
1-C4H8           =2-C4H8                      4.000E+11  0.0     251.0          
1-C4H8           =C-2-C4H8                    4.000E+11  0.0     251.0          
----     Decomposition                                                          
1-C4H8           =C3H5    +CH3                8.000E+16  0.0     307.4          
1-C4H8           =C2H3    +C2H5               2.000E+18 -1.0     405.2          
1-C4H8           =H       +C4H7               0.411E+19 -1.0     407.7          
----     Reaction with H                                                        
1-C4H8  +H       =C4H7    +H2                 0.500E+14  0.0      16.3          
---- RAUL: Tsang, 1981
---- Mechanism and rate constants for the reactions of hydrogen atoms
---- with isobutene at high temperatures. Symp. Int. Combust. Proc 22, 1981
1-C4H8  +H       =C3H6    +CH3                1.722E+13  0.0      15.0
----     Reaction with O                                                        
1-C4H8  +O       =CH3CHO  +C2H4               1.255E+12  0.0       3.6          
1-C4H8  +O       =CH3     +C2H5    +CO        1.625E+13  0.0       3.6          
1-C4H8  +O       =C3H6    +CH2O               2.505E+12  0.0       0.0          
1-C4H8  +O       =C4H7    +OH                 1.300E+13  0.0      18.8          
----     Reaction with OH                                                       
1-C4H8  +OH      =CH3CHO  +C2H5               0.100E+12  0.0       0.0          
1-C4H8  +OH      =CH3     +C2H6    +CO        0.100E+11  0.0       0.0          
1-C4H8  +OH      =N-C3H7  +CH2O               6.500E+12  0.0       0.0          
1-C4H8  +OH      =C4H7    +H2O                1.750E+13  0.0      29.1          
----     Reaction with CH3                                                      
1-C4H8  +CH3     =C4H7    +CH4                0.100E+12  0.0      30.6          
----     REACTION WITH O2                                                       
1-C4H8  +O2      =C4H7    +HO2                4.000E+12  0.0     167.4          
----     REACTION WITH HO2                                                      
1-C4H8  +HO2     =C4H7    +H2O2               1.000E+11  0.0      71.4          
----     REACTION WITH C2H5                                                     
1-C4H8  +C2H5    =C4H7    +C2H6               0.100E+12  0.0      33.5          
----     REACTION WITH C3H5                                                     
1-C4H8  +C3H5    =C4H7    +C3H6               8.000E+10  0.0      51.9          
----     REACTION WITH C4H7                                                     
1-C4H8  +C4H7    =C4H7    +2-C4H8             3.980E+10  0.0      51.9          
1-C4H8  +C4H7    =C4H7    +C-2-C4H8           3.980E+10  0.0      51.9          
---- RAUL: REvizar, IC4H8+CH3O->CH3OH+OTHER, Wallington, T.J.; Ball, J.C.
---- J. Phys. Chem, vol.99, p.3201 - 3205 1995
******************************************                                      
****     42A.   (TRANS-)2-C4H8 REACTIONS                                        
**** OK CATHONET 89                                                             
******************************************                                      
----     Decomposition                                                          
2-C4H8           =H       +C4H7               0.411E+19 -1.0     407.7          
2-C4H8           =CH3     +C3H5               6.500E+14  0.0     298.3          
----     Reaction with H                                                        
2-C4H8  +H       =C4H7    +H2                 0.500E+13  0.0      14.6          
----     REACTION WITH O                                                        
2-C4H8  +O       =C2H4    +CH3CHO             1.000E+12  0.0       0.0          
2-C4H8  +O       =I-C3H7  +CHO                0.603E+13  0.0       0.0          
----     REACTION WITH OH                                                       
2-C4H8  +OH      =C4H7    +H2O                1.010E+14  0.0      12.8          
2-C4H8  +OH      =C2H5    +CH3CHO             1.514E+13  0.0       0.0          
----     Reaction with CH3                                                      
2-C4H8  +CH3     =C4H7    +CH4                0.100E+12  0.0      34.3          
******************************************                                      
****     42B.  C-2-C4H8 REACTIONS                                               
****           OK CATHONET 89                                                             
******************************************                                      
----     ISOMERIZATION                                                          
C-2-C4H8         =2-C4H8                      1.000E+13  0.0     259.4          
----     DECOMPOSITION                                                          
C-2-C4H8         =C4H6    +H2                 1.000E+13  0.0     274.1          
C-2-C4H8         =C4H7    +H                  4.074E+18 -1.0     407.3          
C-2-C4H8         =C3H5    +CH3                1.254E+15  0.0     298.3          
----     REACTION WITH H                                                        
C-2-C4H8+H       =C4H7    +H2                 1.000E+12  0.0      14.6          
----     REACTION WITH OH                                                       
C-2-C4H8+OH      =C4H7    +H2O                1.255E+14  0.0      12.8          
C-2-C4H8+OH      =C2H5    +CH3CHO             1.400E+13  0.0       0.0          
----     REACTION WITH O                                                        
C-2-C4H8+O       =I-C3H7  +CHO                6.030E+12  0.0       0.0          
C-2-C4H8+O       =C2H4    +CH3CHO             1.000E+12  0.0       0.0          
----     REACTION WITH CH3                                                      
C-2-C4H8+CH3     =C4H7    +CH4                1.000E+11  0.0      34.3          
************************************************************************
****     43A.   P-C4H9 REACTIONS                                                 
****            OK CATHONET 89                                                             
******************************************                                      
----     Decomposition                                                          
---- En base3.mch: x 1.2 (3.000E+13/0.0/130.6)    
---- Original: (0.250E+14/0.0/120.6)   
P-C4H9           =C2H5    +C2H4               3.000E+13  0.0     120.6          
P-C4H9           =1-C4H8  +H                  0.126E+14  0.0     161.6          
---- NIST Kerr, J.A.; Trotman-Dickenson, A.F.
---- The reactions of alkyl radicals. Part III. n-Butyl radicals from the photolysis of n-Valeraldehyde
---- J. Chem. Soc. p.1602. 1960. (477 - 571 K) (0.02Bar)      
---- kcin=(1.26E+12/0.0/113.07)      
P-C4H9           =C3H6    +CH3                1.260E+12  0.0     113.1
----     Reaction with O2                                                       
P-C4H9  +O2      =1-C4H8  +HO2                0.100E+13  0.0       8.4          
----  
---- Thynne, J.C.J. Reactions of alkyl radicals.Trans. Faraday Soc. vol58. p.1533. 1962.(348-459K);(0.07-0.12Bar)     
----     Reaction with CH3 (1.408E+13)         
P-C4H9  +CH3     =1-C4H8  +CH4                1.408E+13  0.0       0.0    
******************************************                                      
****     43B.   S-C4H9 REACTIONS                                                
****            OK CATHONET 89                                                             
******************************************                                      
----     DECOMPOSITION                                                          
S-C4H9           =1-C4H8  +H                  0.200E+14  0.0     169.2          
S-C4H9           =2-C4H8  +H                  5.000E+13  0.0     158.7          
S-C4H9           =C-2-C4H8+H                  5.000E+13  0.0     158.7          
---- En Base_3: (3.600E+14/0.0/139.0)        
S-C4H9           =C3H6    +CH3                3.600E+14  0.0     139.0          
---- CEC 94, k_inf=(7.23E13/-0.37/0.00), (200-1500K, dlog k=+-0.5)
----       k_0(N2)=(5.53E19/-0.76/0.00), (250-1400K, dlog k=+-0.4)
----     Fcent(N2)=(0.50)              , (200-1500K, dFc = +- 0.2)
---- S-C4H9  +M(1)    =C3H6    +CH3     +M(1)      2.730E+10  1.110   130.49  
----                                    LOW       1.470E+52 -10.60   146.49    
----                                    TROE   0.526   607.0    11.0  2870.0
---- 
---- NIST Gang, J.; Pilling, M.J.; Robertson, S.H.
---- Asymmetric internal rotation: application to the 2-C4H9=CH3 + C3H6 reaction
---- J. Chem. Soc. Faraday Trans. vol. 93. p.1481 - 1491. 1997. kcin=(2.670E+10/1.060/129.7)   
---- NIST: Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.; Gutman, D.
---- Experimental and theoretical study of the sec-C4H9 = CH3 + C3H6 reaction
---- J. Phys. Chem. vol. 98. p.11099 - 11108. 1994   
---- kcin=(2.725E+10/1.11/130.53)        
---- En Base_3: multiplico x 1.5 (4.087E+10/1.120/130.5) pero la omito !!! 
---- S-C4H9           =C3H6    +CH3                2.725E+10 1.110    130.5    
---- Gang, J.; Pilling, M.J.; Robertson, S.H.J. Chem. Soc. Faraday Trans.
---- vol. 93. p.1481 - 1491. 1997  Demasiado consumo de C4H10     
---- S-C4H9           =C3H6    +CH3                2.670E+10 1.060    129.7    
----     Reaction with O2                                                       
S-C4H9  +O2      =1-C4H8  +HO2                0.200E+13  0.0      18.8          
S-C4H9  +O2      =2-C4H8  +HO2                0.200E+14  0.0      17.8          
S-C4H9  +O2      =C-2-C4H8+HO2                0.200E+14  0.0      17.8          
----     Reaction with CH3
---- kcin= (kcin_PC4H9+CH3)*8E-02 (Miyoshi, M.; Brinton, R.K;Gaseous reaction of methyl radicals with propylene)
---- J. Chem. Phys vol36.p.3019 1962.    
---- En el original la omito.
---- En Base_3 entra
---- Original=(1.184E+12/0.0/0.0)   
S-C4H9  +CH3     =2-C4H8  +CH4                1.184E+12  0.0       0.0   
---- 
******************************************                                      
****     45.   C4H10 REACTIONS                                                  
******************************************                                      
---- OK CEC 91                          
---- (300-1200K) Uncertaintly=2.0  kcin_Literatura=(1.150E+13/0.0/0.0)    
---- Divido por 1.42:
---- C2H5    +C2H5    =C4H10                       8.000E+12    0.0       0.0        
---- Divido por 2: 
C2H5    +C2H5    =C4H10                       5.752E+12    0.0       0.0
---- 
---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions
---- J. Phys. Chem. vol.89. p.4600 1985 
---- C4H10   =C2H5    +C2H5                        7.940E+16    0.0     335.9         
---- OK WJ PITZ, CK WESTBROOK, COMB & FLAME 63, 113-33, 1986        
C4H10            >N-C3H7  +CH3                0.100E+18    0.0     357.6        
N-C3H7  +CH3     >C4H10                       0.200E+14    0.0       0.0        
---- RAUL: NIST, Dean, A.M.
---- Predictions of pressure and temperature effects upon radical addition
---- and recombination reactions. J. Phys. Chem. vol.89. p. 4600, 1985.
---- 300-2500K (RRKM)
C4H10   =P-C4H9  +H                           9.516E+07    0.0     409.9
C4H10   =S-C4H9  +H                           6.023E+07    0.0     397.4
---- 
---- OK WA 22ND SYMP. 89                                                        
---- C4H10   +H       >P-C4H9  +H2                 0.563E+08    2.0      32.2        
---- P-C4H9  +H2      >C4H10   +H                  0.912E+13    0.0      60.6        
---- C4H10   +H       >S-C4H9  +H2                 0.175E+08    2.0      20.9        
---- S-C4H9  +H2      >C4H10   +H                  0.154E+14    0.0      66.5        
---- 
---- Baldwin, R.F.; Walker, R.W. Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + Alkanes
---- J. Chem. Soc. Faraday Trans. 1: vol.75. p. 140. 1979. (753 - 773 K) Theoretical   
---- x 2    (1.319E+14_N;1.957E+14_S)        
C4H10   +H       =P-C4H9  +H2                 2.638E+14    0.0      39.2
C4H10   +H       =S-C4H9  +H2                 1.957E+14    0.0      33.26    
---- 
---- Nicholas, J.E.; Vaghijiani, G.L Reaction probabilities, cross sections, and threshold energies in the reaction of
---- isotopically pure H atoms and n-butane. J. Chem. Phys.. vol 91. p.5121 1989. (250-500K)   
---- Es muuuuuy rapida !!!!!!!
---- C4H10   +H       =P-C4H9  +H2                 3.800E+13    0.0     50.968    
---- C4H10   +H       =S-C4H9  +H2                 2.302E+13    0.0     33.008     
----  
---- OK WA 22ND SYMP. 89                                                        
C4H10   +O       >P-C4H9  +OH                 0.113E+15    0.0      32.9        
P-C4H9  +OH      >C4H10   +O                  0.148E+14    0.0      51.3        
C4H10   +O       >S-C4H9  +OH                 0.562E+14    0.0      21.8        
S-C4H9  +OH      >C4H10   +O                  0.735E+13    0.0      40.2        
---- 
---- Cohen, N. Westberg,K.R. The use of transition state theory to extrapole rate coefficients for reactions of O atoms with alkanes.
---- Int. Journal Chem Kinetics. vol 18 p.99. 1986. (250-2000K)  
---- kcin_N=(4.252E12/(T/298)2.4/23.031) 
---- kcin_S=(1.162E12/(T/298)2.6/10.809) 
---- C4H10   +O       =P-C4H9  +OH                 4.903E+06    2.4     23.03 
---- C4H10   +O       =S-C4H9  +OH                 4.289E+05    2.6     10.80    
---- 
---- Herron, J. T. Huie. R.E. Rate constants for the reactions of atomic oxygen (O3p) with organic compounds in the gas phase. Journal
---- Physc.Chem.Ref. Data. vol 2. p.467-518.1973. (298-1000K) Uncertaintly=1.3. Theorycal.    kcin_N=(2.999E13/0.0/24.278)   
---- C4H10   +O       =P-C4H9  +OH                 2.999E+13    0.0     24.28
---- C4H10   +O       =S-C4H9  +OH                 4.435E+13    0.0     20.04
---- 
---- Droege, A.T.; Tully, F.P. Hydrogen-atom abstraction from alkanes by OH. 5. n-Butane
---- J. Phys. Chem. vol90. p.5937. 1987. (294 - 509 K); 0.53 Bar. (3.317E-03)    
---- 4.137E+07_N;7.224E+07_S    (dividi por 2!!!)      
---- Original: (4.130E+07/ 1.73/3.151)  
---- C4H10   +OH      >P-C4H9  +H2O                2.068E+07   1.73     3.151           
---- P-C4H9  +H2O     >C4H10   +OH                 0.717E+08    1.7      93.3        
---- C4H10   +OH      >S-C4H9  +H2O                3.612E+07   1.64    -1.031        
---- S-C4H9  +H2O     >C4H10   +OH                 0.128E+09    1.6      89.1        
----      
---- RAUL: Tambien. Cohen, N.
---- Are reaction rate coefficients additive?
---- Revised transition state theory calculations for OH + alkane reactionsn
---- Int. J. Chem. Kinet. vol.23. p.397-417, 1991.
---- kcin_N=(9.395E+11/(T/298 K)1.80/3.991)    
---- kcin_S=(4.758E+11/(T/298 K)2.00/2.494)
---- Muy rapida (demasiado consumo de C4H10)              
---- C4H10   +OH      =P-C4H9  +H2O                3.306E+07    1.8     3.991    
---- C4H10   +OH      =S-C4H9  +H2O                5.358E+06    2.0     2.494  
---- 
---- Atkinson: (3.00E03)    
---- C4H10   +OH      =P-C4H9  +H2O                5.391E+06    2.0     1.887           
---- C4H10   +OH      =S-C4H9  +H2O                5.202E+06    2.0     2.569      
----                                                                     
---- Cathonnet, J.C. Boettner and H James. 18 Sympo. Int. Comb. 1981. p903-913.
---- kcin_N=(3.692E+12/0.0/6.843)
---- kcin_S=(5.643E+12/0.0/3.559)     
C4H10   +OH      =P-C4H9  +H2O                3.000E+12    0.0     6.843     
C4H10   +OH      =S-C4H9  +H2O                5.643E+12    0.0     3.559      
---- 
---- RAUL: NIST: Pitz, W.J.; Westbrook, C.K
---- Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock
---- CandF. vol.63, p.113-133, 1986.
C4H10   +HO2     >P-C4H9  +H2O2               1.140E+13    0.0      81.2        
P-C4H9  +H2O2    >C4H10   +HO2                0.458E+13    0.0      41.1        
----  
C4H10   +HO2     >S-C4H9  +H2O2               6.800E+12    0.0      71.2        
S-C4H9  +H2O2    >C4H10   +HO2                0.163E+13    0.0      31.0        
----
---- OK WA 22ND SYMP. 89                                                        
C4H10   +O2      >P-C4H9  +HO2                0.250E+14    0.0     205.2        
P-C4H9  +HO2     >C4H10   +O2                 0.250E+13    0.0      -9.2        
C4H10   +O2      >S-C4H9  +HO2                0.400E+14    0.0     199.3        
S-C4H9  +HO2     >C4H10   +O2                 0.407E+13    0.0     -15.2        
---- OK CATHONET 89                                                             
C4H10   +CH3O    >P-C4H9  +CH3OH              0.300E+12    0.0      29.3        
P-C4H9  +CH3OH   >C4H10   +CH3O               0.122E+11    0.0     209.4        
C4H10   +CH3O    >S-C4H9  +CH3OH              0.600E+12    0.0      29.3        
S-C4H9  +CH3OH   >C4H10   +CH3O               0.244E+11    0.0     209.4        
--------                                                                         
---- Yampol'skii, Yu.P. Reactivity of Primary and Secondary Carbon-Hydrogen Bonds in Radical Processes
---- React. Kinet. Catal. Lett. vol.2 p.449. 1975.  
---- kcin=(5.011E+11/0.0/56.9)    Estimated. !!!Theory.    
---- C4H10   +CH3     =P-C4H9  +CH4                5.011E+11    0.0      56.9
---- Anterior multiplicada por 2!
C4H10   +CH3     =P-C4H9  +CH4                1.094E+12    0.0      56.9    
---- C4H10   +CH3     =S-C4H9  +CH4                4.270E+11    0.0      43.9   
---- Sway, M. Kinetics of abstraction reactions of methyl radicals with alkanes in gas phase
---- Indian J. Chem. vol29. p.748. 1990. (399 - 434 K) 0.67 Bar. (incertidumbre 1.26)  
---- C4H10   +CH3     =S-C4H9  +CH4                6.872E+11    0.0      39.99
C4H10   +CH3     =S-C4H9  +CH4                1.444E+12    0.0      39.99   
---- 
---- Yampol'skii, Yu.P.; Nametkin, N.S. Rate Constants of Reactions of CH3, C2H5, and Atomic Hydrogen with Butane at High
---- Temperatures. Kinet. Catal. vol. 17 pag.57. 1976. kcin=(3.162E+12/0.0/46.47)        
---- C4H10   +CH3     =PRODUCTOS  +CH4                3.162E+12    0.0      46.47   
---- 
---- From: M. Cathonnet...C3_C4.18 Sympo. Ref: Sundaram,K.M and Froment,G.F.: I. and E.C. Fundamentals 17,174 (1978)
C4H10   +C2H3    =P-C4H9  +C2H4               1.000E+12    0.0      75.24
C4H10   +C2H3    =S-C4H9  +C2H4               8.000E+11    0.0      70.22
----  
---- 
---- Smpol'skii, Yu.P.; Nametkin, N.Rate Constants of Reactions of CH3, C2H5, and Atomic Hydrogen with Butane at High
---- Temperatures. Kinet. Catal. vol 17.p.57. 1976. (980-1060K) (0.07Bar) Experimental Incertidumbre=5.0     
---- k_total=1.581E+13. Si distribuye en proporcion 2:1 entre P y S    
---- k_total=3.162E+12.!!!!!! Esta es la original, al multiplicarla por 5 da el valor de 1.581E+13 !!!
C4H10   +C2H5    =P-C4H9  +C2H6               1.054E+13    0.0      53.54   
C4H10   +C2H5    =S-C4H9  +C2H6               5.270E+12    0.0      48.54
---- 
---- From: M. Cathonnet...C3_C4.18 Sympo. Ref: Sundaram,K.M and Froment,G.F.: I. and E.C. Fundamentals 17,174 (1978)  
C4H10   +C3H5    =P-C4H9  +C3H6               4.000E+11    0.0      78.58    
C4H10   +C3H5    =S-C4H9  +C3H6               8.000E+11    0.0      70.22 
---- 
---- Modeling of Aromatic and Policyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames.  
---- N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi and S.M. Senkan.
---- Combustion Sci And Tech. 1996, Vol 116-117, pp.211-287  
---- kcin_P=(7.940E+11/0.0/85.69)  
---- kcin_S=(3.160E+11/0.0/68.55)  
---- C4H10   +C3H5    =P-C4H9  +C3H6               7.940E+11    0.0      85.69  
---- C4H10   +C3H5    =S-C4H9  +C3H6               3.160E+11    0.0      68.55    
------ 
******************************************                                      
****    C formation reactions ***********
******************************************
---- R.L. THORNE, M. C. BRANCH, D. W. CHANDLER, R. J. KEE, J. A. MILLER,
---- SYMP. (INT) COMB., 21, 963, I(86)
CH      +H       =C       +H2                 1.500E+14  0.00      0.0
C       +O2      =CO      +O                  5.000E+13  0.00      0.0
---- 
************************************************************************
******************************************
****                                     *
****     I S O - M E C H A N I S M       *
****                                     *
******************************************
****
******************************************
****     i-40.   i-C4H7 Reactions
******************************************
---- Chevalier1993
I-C4H7           =C3H4    +CH3                1.000E+13    0.0     213.6
******************************************
****     i-41.   i-C4H8 Reactions
******************************************
----     Decomposition
I-C4H8           =C3H5    +CH3                5.000E+18   -1.0     307.4
---- Original= (1.000E+17/0.0/368.5)   
---- Douhou, S.; Perrin, D.; Martin, R Etude cinetique et modelisaiton de la reaction thermique de l'isobutene vers 800 K.
---- I. Isobutene pur. J. Chim. Phys. vol.91. p.1597-1627 1994.     
---- (763-813K);(0.01-0.13Bar)  kcin=(2.00%+15/0.0/3.65.83)  Experimental       
I-C4H8           =I-C4H7  +H                  2.000E+15    0.0     365.8
----     Reaction with H
I-C4H8  +H       =I-C4H7  +H2                 1.000E+13    0.0      15.9
---- Tsang, W.; Walker, J.A. Mechanism and rate constants for the reactions of hydrogen atoms with isobutene at high
---- temperatures. Symp. Int. Combust. Proc. vol.22. p.1015 1989.  
---- (1000-1180K) (2.53-3.04Bar) kcin=(1.72257E+13/0.0/15.049)    
I-C4H8  +H       =C3H6    +CH3                1.722E+13    0.0      15.0    
----     Reaction with O
I-C4H8  +O       =I-C4H7  +OH                 2.500E+05    2.6      -4.7
I-C4H8  +O       =I-C3H7  +CHO                7.230E+05    2.3      -4.4
----     Reaction with OH
I-C4H8  +OH      =I-C4H7  +H2O                9.600E+12    0.0       5.2
I-C4H8  +OH      =I-C3H7  +CH2O               1.500E+12    0.0       0.0
----     Reaction with CH3
---- T.J. Mitchell und S.W. Benson, Int.J.Chem.Kinet., 1993,25,931-955
I-C4H8  +CH3     =I-C4H7  +CH4                6.030E+11    0.0     37.23
******************************************
****     i-42a.   i-C4H9 Reactions
******************************************
----     Decomposition
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
---- kcin=(2.000E+13/0.0/125.34)   
---- Knyazev, V.D.; Slagle, I.R.. Unimolecular decomposition of n-C4H9 and iso-C4H9 radicals
---- J. Phys. Chem. vol 100 p.5318 - 5328, 1996. kcin=(2.141E+12/0.65/128.87)     
---- (298-900K) (0-10.13Bar)      
I-C4H9           =C3H6    +CH3                2.141E+12   0.65    128.90   
---- M. Weissman and S. Benson, Int. J. Chem. Kinet., 1984,16,307
---- CEC94, k_inf= 8.300E+13    0.0    159.63
I-C4H9           =I-C4H8  +H                  1.000E+14    0.0    151.88
----     Reaction with O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H9  +O2      =I-C4H8  +HO2                2.410E+10    0.0       0.0
----     Reaction with CH3   
----  incertidumbre 2.0 Tsang 
I-C4H9  +CH3     =I-C4H8  +CH4                6.040E+12  -0.32       0.0
----     Reaction with C3H8  
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H9  +C3H8    =I-C4H10 +N-C3H7             0.903E+00   3.65    38.240
I-C4H9  +C3H8    =I-C4H10 +I-C3H7             1.506E+00   3.46    31.179   
******************************************
****     i-42b.   t-C4H9 Reactions
******************************************
----     Decomposition
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990),
---- und CEC94, S.1026, +-0.5, 300-800K
T-C4H9           =H       +I-C4H8             8.300E+13    0.0    159.63
---- Warnatz, Combustion Chemistry (ed. W.C. Gardiner), Springer-Verlag,
----- NY 1984,Chapter 5, pp.197
T-C4H9           =C3H6    +CH3                1.000E+16    0.0    193.00
----     Reaction with O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
T-C4H9  +O2      =I-C4H8  +HO2                4.820E+11    0.0      0.00
---- 
----     Reaction with CH3   
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
T-C4H9  +CH3     =I-C4H8  +CH4                1.258E+13    0.0     2.494      
---- disproposition
---- CEC94, p.1026, +-0.15 at 300K rising to +-0.3 at 1000K
T-C4H9  +T-C4H9  =I-C4H10 +I-C4H8             7.226E+16  -1.73      0.00
******************************************
****     i-43.   i-C4H10 Reactions
******************************************
---------------------------------------
-----    Decomposition of i-C4H10
---------------------------------------
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
---- kcin=(1.100E+26/-2.61/377.985) Error numerico       
---- Hidaka, Y.; Fujiwara, M.; Oki, T.; Kawano, H.
---- Thermal decomposition of isobutane in shock waves. Rate constant of initiation reaction
---- Chem. Phys. Lett. Vol 144, p.570 1988 
---- (1000-1560K)  (1.32-2.93Bar) 
I-C4H10          =CH3     +I-C3H7             4.500E+16    0.0    339.23
---- Chevalier 1993, Diss
I-C4H10          =T-C4H9  +H                  1.000E+15    0.0     390.7
---- Chevalier 1993, Diss
I-C4H10          =I-C4H9  +H                  1.000E+15    0.0     410.4
---------------------------------------
-----    H-atom abstraction of i-C4H10
---------------------------------------
----     Reaction with H
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +H       =T-C4H9  +H2                 6.020E+05    2.4    10.810
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +H       =I-C4H9  +H2                 1.810E+06   2.54    28.270
----     Reaction with O
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O       =T-C4H9  +OH                 1.560E+05    2.5     4.660
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O       =I-C4H9  +OH                 4.280E+05    2.5    15.250
----     Reaction with OH
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +OH      =T-C4H9  +H2O                5.730E+10   0.51      0.27
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +OH      =I-C4H9  +H2O                2.290E+08   1.53      3.24
----     Reaction with HO2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +HO2     =I-C4H9  +H2O2               3.010E+04   2.55    64.850
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +HO2     =T-C4H9  +H2O2               3.610E+03   2.55    44.070
----     Reaction with CH3
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3     =T-C4H9  +CH4                0.904E+00   3.46     19.24
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3     =I-C4H9  +CH4                1.360E+00   3.65    29.900
----     Reaction with O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O2      =I-C4H9  +HO2                4.040E+13    0.0   213.100
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O2      =T-C4H9  +HO2                3.970E+13    0.0   184.080
----     Reaction with CH3O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3O2   =I-C4H9  +CH3O2H             3.010E+04   2.55    64.850
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3O2   =T-C4H9  +CH3O2H             3.610E+03   2.55    44.070
---- RAUL: NIST, Tsang, 1990. Incer=2.50.
I-C4H10 +C2H5    =I-C4H9  +C2H6               1.385E+00   3.65    38.247
---- RAUL: NIST, ZTsang, 1990, incer=2.50
I-C4H10 +C2H5    =T-C4H9  +C2H6               0.541E+00   3.46    24.943
----
----
----
----
----
----
--------
--------
************************************************************************
****
****    PART TWO: REACTIONS LOW TEMPERATURE
****
************************************************************************
--------
--------
----
----
----
----
----
----
************************************************************************
****   1.            CH3CO REACTIONS
************************************************************************
---- 17b
---- Ya incluidas en la primera parte  
---- RAUL: NIST, 2000
---- Tsang, 1986: kcin=(6.023E+13/0/0)
---- Hassinen, E.; Koskikallio, J.,:kcin=(2.3188E+13/0/0)
---- Yee Quee, M.J.; Thynne, J.C.J.:kcin=(1.8189E+13/0/0)
----CH3O    +CH3O    >CH2O    +CH3OH              1.000E+12 0.0         0.0
----CH2O    +CH3OH   >CH3O    +CH3O               2.88E+10  0.452     347.0
---- RAUL: NIST, 2000
---- Tsang.1986
CH3O    +CH3     =CH2O    +CH4                2.409E+12 0.0         0.0
---- NIST, 2000, Tsang.1986
---- Uncrertainty=5.0  
CH3O    +HO2     =CH2O    +H2O2               3.011E+11 0.0         0.0
---- NIST, 2000 Tsang, 1986
---- Uncertainty=5.0
CH3O    +C2H5    =CH2O    +C2H6               2.409E+13 0.0         0.0
---- NIST, 2000, Tsang, 1986
---- Uncertainty=5.0
CH3O    +C2H3    =CH2O    +C2H4               2.409E+13 0.0         0.0
************************************************************************
****   2.            CH3CO REACTIONS
************************************************************************
----15b
---- CH3CO   +O2      >CH3CO3                      1.000E+12 0.0         0.0
---- CH3CO3  >CH3CO   +O2                          1.020E+07 2.55      172.0
---- koriginal=(1.000E+12 0.0 0.0)
---- NIST 2000, Sehested, J.; Christensen, L.K.; Nielsen, O.J.; Wallington, T.J.
---- Absolute rate constants for F + CH3CHO and CH3CO + O2,
---- relative rate study of CH3CO + NO, and the product distribution of the F + CH3CHO reaction
---- Int. J. Chem. Kinet. vol.30 , p.913-921. 1998. Experimental, 295K. 1 Bar
CH3CO   +O2      =CH3CO3                      2.650E+12 0.0         0.0
---- NIST, 2000, CEC, 1994
---- Uncertainty=1.58  
CH3CO   +O       =CO2     +CH3                4.818E+23 0.0         0.0
---- NIST, 2000, Tsang, 1986
---- Uncertainty=3.00    
CH3CO   +OH      =CH2CO   +H2O                1.210E+13 0.0         0.0
---- NIST, 2000: Adachi, H., Basco, N., and James, D. G. L.
---- The Acetyl Radicals CH3CO and CD3CO Studied by Flash Photolysis and Kinetic Spectroscopy
---- Int. J. Chem. Kinet. 1981, v.13, p.1251.
CH3CO   +CH3     =C2H6    +CO                 3.300E+13 0.0         0.0
---- NIST 2000: Hassinen,E., Kalliorinne,K., Koskikallio,J.
---- Kinetics of reactions between methyl and acetyl radicals in
---- gas phase produced by flash photolysis of acetic anhydride.
---- Int. J. Chem. Kinet., 1990, v. 22, p. 741 I
CH3CO   +CH3     =CH4     +CH2CO              6.100E+12 0.0         0.0
************************************************************************
****   3.            CH3CHO REACTIONS
************************************************************************
---- 14b
CH3CHO  +CH3O2   >CH3CO   +CH3O2H             1.000E+12 0.0        42.0
CH3CO   +CH3O2H  >CH3CHO  +CH3O2              5.030E-01 3.42       30.4
---- NIST, 2000: Hohlein, G.; Freeman, G.R.
---- Radiation-sensitized pyrolysis of diethyl ether. Free-radical reaction rate parameters
---- VOL.92. 6118, 1970 (357-676K, 0.05-2.8 Bar)
CH3CHO  +C2H5    =CH3CO   +C2H6               1.258E+12 0.0       35.586
---- RAUL: Scherzer, K.; Loser, U.; Stiller, W.
---- Revizar: BSBL-Rechnungen zu wasserstoffabspaltungsreaktionen durch alkenylradikale;
---- Vinylradikale. Z. Chem. vol. 27. p.300. 1987. kcin=(8.131E10/0.0/15.382)
CH3CHO  +C2H3    =CH3CO   +C2H4               8.131E+10 0.0       15.382   
************************************************************************
****   4.            CH3CO3 REACTIONS
************************************************************************
---- 27b
---- korigi_for=(4.640E+10 0.0 -10.8), kcin_back=(2.290E+11-0.0901 151.0)
---- NIST 2000: Crawford, M.A.; Wallington, T.J.; Szente, J.J.; Maricq, M.M.; Francisco, J.S.
---- Kinetics and mechanism of the acetylperoxy + HO2 reaction
---- J. Phys. Chem. A. vol.103. p.365-378, 1999.
CH3CO3  +HO2     =CH3CO3H +O2                 2.111E+11 0.0      -11.22
----
---- 22b
---- NIST: Dixon, D.J.; Skirrow, G.; Tipper, F.H.
---- Low Temperature Gas-phase Oxidation of Aldehydes. Part 2. Retardation above 120oC
---- J. Chem. Soc. Faraday Trans. 1. vol.70. p.1090. 1974.
---- kcin=(2.4 veces Ray, D.J.M.)
---- kcin=(7.198E+09/0/0) 
---- 22.b
CH3CO3  +CH2O    =CH3CO3H +CHO                7.198E+09 0.0         0.0
---- CH3CO3  +CH2O    >CH3CO3H +CHO                1.000E+12 0.0        42.0
---- CH3CO3H +CHO     >CH3CO3  +CH2O               2.420E+07 1.01       25.4
---- 70
CH3CO3  +CH3     >CO2     +CH3     +CH3O      3.610E+13 0.0         0.0
----
---- NIST: Ray, D.J.M.; Waddington, D.J.
---- Epoxidation of Alkenes in the Gas Phase
---- J. Phys. Chem.. vol. 76. 3319. 1972. 457K. 0.13 Bar.
---- kcin=(2.999E+09/0/0)
---- 14b
CH3CO3  +CH3CHO  =CH3CO3H +CH3CO              2.999E+09 0.0         0.0
---- CH3CO3  +CH3CHO  >CH3CO3H +CH3CO              1.890E+12 0.0        30.1
---- CH3CO3H +CH3CO   >CH3CO3  +CH3CHO             1.960E+07 1.21       30.2
---- 22b
CH3CO3  +C2H5CHO >CH3CO3H +C2H5CO             1.000E+12 0.0        42.0
CH3CO3H +C2H5CO  >CH3CO3  +C2H5CHO            1.270E+10 0.266      47.1
************************************************************************
****   5.            CH3CO3 REACTIONS
************************************************************************
---- 15
CH3CO3H =CO2     +CH3     +OH                 3.980E+15 0.0       167.0
----
---- NIST 2000: Sahetchian, K.A.; Rigny, R.; Tardieu de Maleissye, J.; Batt, L.;
---- Anwar Khan, M.; Mathews, S. The pyrolysis of organic hydroperoxides (ROOH).
---- Symp. Int. Combust. Proc. vol.24. p.637-643. 1992. Exp.(533-720 K.0.3-2.3Bar).
---- Uncertainty=2.51. CH3C=0 (O -> Grupo C=O). Problema: Que haceer con CH3CO2?
---- Base 3 la incluyo
CH3CO3H =CH3CO2  +OH                          3.017E+10 0.0       167.9
---- 
---- Revision bibliografica: R.D Wilk 1986!!!  
---- CH3CO2  -> CH3  +CO2  (Problema: Valores de la Cinetica???) 
---- Base 3 la incluyo 
CH3CO2  +M(1)    =CO2     +CH3     +M(1)      8.700E+15 0.0      60.192      
---- Este paso es dominante a baja temperatura.  A alta temp. la descomposicion directa es la favorecida: 
---- CH3CO    +  M  -> CH3   +  CO  +  M  (Reaccion ya incluida!!!!)        
---- 
************************************************************************
****   6.            C2H4 REACTIONS
************************************************************************
---- 
---- C2H4O = OXIRAN !!!!!
---- ----O---
---- |      |   -> C2H4O (Oxyran)
---- CH2---CH2
----
---- ----O---
---- |      |   -> C2H3O (Oxyranil)
---- CH2---CH*
----
---- CEC 94.
---- 600-900K +/- 0.15 at 600K 0.25 900K. Uncertainty=1.78
---- C2H4O = OXIRAN !!!!!
---- kcin=(2.228E+12/0.0/71.9) 
---- C2H4    +HO2     =OXIRAN  +OH                 2.228E+12 0.0        71.9
----
---- 2003
---- kcin=(3.793E+12/0.0/74.74)
----           2.093E+12      (+,-) 0,15 (1.41)   600-700K
----                          (+,-) 0,25 (1.78)    900K
C2H4    +HO2     =OXIRAN  +OH                 2.793E+12 0.0       74.74
----
----
---- **********
---- RQ 11-11-2004 
---- Inicio C2H4OOH Mechanism
----
---- Nota from:Wilk, Westbrook, Pitz and Cernansky. 23 Symp. p.203-210.
---- C2H4     + HO2    -> C2H4OOH  Ea = 33.44 kJ/mol    
---- C2H4OOH -> C2H4   +  HO2      Ea = 83.60 kJ/mol  kcin=(2.000E13/0.0/98.23) Ranzi94 Nancy
----
---- kcin=(2.860E+11/0.0/91.91)
---- C2H4OOH =C2H5O2                                  kcin=(2.860E+11/0.0/91.96)
---- C2H4OOH -> OXIRAN +  OH                          kcin=(1.500E+11/0.0/83.60) Ranzi94 Nancy
----
---- Nancy: CHEMKIN format Ea in KCAL/mol !!!!
---- C2H5OO=R16C2H4O2H        4.2E12      0.     36.9E3 ! HUGHES93          !154.24   
---- C2H4O2H=C2H4O +OH        1.5E11      0.     20.0E3 !(383,-383)<RANZI94>! 83.60
---- C2H4O2H=CH2OH +HCHO      2.5E13      0.     27.5E3 !(384,-384)<RANZI94>!114.95
---- C2H4O2H=C2H4  +O2H       2.0E13      0.     23.5E3 !(385,-385)<RANZI94>! 98.23
----
---- R15 Homolitic O-O Bound Scission For Radicals
---- kcin=(1.000E+09/0.0/31.4)
---- kcin=(1.500E+11/0.0/83.60) Ranzi94 Nancy
---- C2H4OOH =OXIRAN  +OH                          1.000E+09 0.0       31.40
---- C2H4OOH =OXIRAN  +OH                          1.500E+11 0.0       83.60
----
---- Trabajo con el mecanismo de Wilk y los valores de Nancy, y adiciono CH2O formacion:
----
---- C2H4OOH =C2H5O2                               2.860E+11 0.0       91.96 
---- 2C2OOH1 =C2H5O2                               2.860E+11 0.0       91.96
----
---- C2H4OOH =HO2     +C2H4                        2.000E+13 0.0       98.23
----
----****HO2     +C2H4    =C2H4OOH                     2.000E+15 0.0       33.44
HO2     +C2H4    =2C2OOH1                     1.000E+11 0.0       71.44
----****C2H4OOH =OXIRAN  +OH                          1.500E+11 0.0       83.60
---- 2C2OOH1 =OXIRAN  +OH                          1.500E+11 0.0       83.60
----
----****C2H4OOH =CH2OH   +CH2O                        2.000E+13 0.0      114.95 
2C2OOH1 =CH2OH   +CH2O                        2.000E+13 0.0      114.95
----  
---- End C2H4OOH Mechanism !!!
---- ***************
----
---- Konnov Estimated
---- k = 1.000E+12 exp(- 25000.0 cal/mol /RT) cm3/mol s
C2H4    +C2H5O2  =C2H5OOH +C2H3               1.000E+12 0.0      104.50
----
---- NIST 2000. Oxirane System.
---- Bogan, D.J.; Hand, C.W. Absolute Rate Constant, Kinetic Isotope Effect,
---- and Mechanism of the Reaction of Ethylene Oxide with Oxygen(3P) Atoms
---- J. Phys. Chem. vol.82. p.2067. 1978. Exp. 298-691K. Uncertainty=1.2.
OXIRAN  +O       =C2H3O   +OH                 1.909E+12 0.0        21.9
----
---- Konnov Estimated
---- kcin=(1.000E+11/0.0/58.6) 
OXIRAN  +CH2CHO  =CH3CHO  +C2H3O              1.000E+11 0.0        58.6
----
---- Baldwin, R.R.; Keen, A.; Walker, R.W.
---- Studies of the decomposition of oxirane and of its addition to slowly reacting
---- mixtures of hydrogen and oxygen. J. Chem. Soc. Faraday Trans.1. vol.80. p.435.1984
---- Experimental. 297-753K. 0.08-0.67 Bar
OXIRAN  +H       =C2H3O   +H2                 8.010E+13 0.0        40.5
----
---- NIST Lifshitz, A.; Ben-Hamou, H.
---- Thermal reactions of cyclic ethers at high temperatures. 1.
---- Pyrolysis of ethylene oxide behind reflected shocks. J. Phys. Chem
---- vol.87. p.1782. 1983.
OXIRAN  +H       =C2H4    +OH                 9.516E+10 0.0        20.9
OXIRAN  +H       =C2H3    +H2O                4.999E+09 0.0        20.9
----
---- NIST. Baldwin 1984.
---- kcin=(1.782E+13/0.0/15.130) (+,-) 1.962 kJ
---- OXIRAN  +OH      =H2O     +C2H3O              1.782E+13 0.0       16.130
----
---- NIST.  Lorenz, K.; Zellner, R.   Rate constants and vinoxy product yield in the reaction OH + Ethylene Oxide
---- Ber. Bunsenges. Phys. Chem. vol.88 p1228 1984. (298 - 435 K)(0.01-0.08Bar)
---- kcin=(1.110E-11/0.0/12.139) (�3.99x10-12 cm3/molecule s)( �1214 J/mole)/RT
---- kcin=(6.625E+12/0.0/12.139) (�2.4031*E+12cm3/mol s)
----      kcinmax=4.222
----      kcinmin=9.028
OXIRAN  +OH      =H2O     +C2H3O              4.625E+12 0.0       13.239
----
---- NIST. Baldwin 1984.
---- Uncertainty=1.41
OXIRAN  +CH3     =CH4     +C2H3O              1.072E+12 0.0        49.47
---- 
---- korig=(1.072E+12/0.0/49.47) Lifshitz, A.; Ben-Hamou, H.
---- Decomposition, NIST 2000: Yang, H.X.; Chen, H.; Han, D.G
---- The rate constant determination for the isomerization of
---- ethylene oxide to acetaldehyde by chemical shock tube
---- Acta Chim. Sin.(Engl.Ed.).vol.47. p.941. 1989.(1060-1170K)
OXIRAN  =CH3CHO                               6.310E+13 0.0       247.71
----
---- Baldwin, R.R.; Keen, A.; Walker, R.W.
---- Studies of the decomposition of oxirane and of its addition to slowly reacting mixtures of hydrogen
---- and oxygen at 480 C.   J. Chem. Soc. Faraday Trans. 1:vol.80, p 435, 1984.
---- (830-1200K;1.52-10.13Bar) Experimental. 5.25x10-4 (s-1)
---- OXIRAN  =CH3     +CHO                         5.250E-04 0.0         0.00
---- OXIRAN  =CH4     +CO                          5.000E-04 0.0         0.00
----
---- Lifshitz, A.; Ben-Hamou, H. Thermal reactions of cyclic ethers at high temperatures.
---- 1. Pyrolysis of ethylene oxide behind reflected shocks. J. Phys. Chem. vol 87 p.1782, 1983.
---- (830-1200K) (1.52,10.13Bar).
OXIRAN  =CH4     +CO                          1.210E+13 0.0       239.46
OXIRAN  =CH3     +CHO                         3.630E+13 0.0       239.46
----
---- konnov.  
---- Konnov, A.A. High-temperature pyrolysis and oxidation of oxygen-containing ethane derivatives.
---- Ph.D. Thesis, Institute of Chemical Physics, USSR Academy of Sciences, 1985.
---- kcin=(1.000E+14/0.0/217.14)  
---- NOTA: NO incluir la segunda !!!!
OXIRAN  +O2      =HO2     +C2H3O              1.000E+14 0.0       217.14
---- OXIRAN  +HO2     =H2O2    +C2H3O              5.000E+13 0.0        75.50
----
---- konnov.
---- Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., and Skachkov, G.I. 
---- Pyrolysis and ignition of ethylene oxide. Sov. J. Chem. Phys., 1990, v.6, pp.2181-2195.
---- kcin=(4.000E+15/0.0/0.0)
C2H3O   +H       +M(1)    =OXIRAN  +M(1)      4.000E+15 0.0         0.00
----
---- Chen, J.; Young, V.; Hooshiyar, P.A.; Niki, H.; Hurley, M.D
---- FTIR spectroscopic study of the Cl-atom-initiated reactions of ethylene oxide in O2/N2 diluent
---- J. Phys. Chem. vol.99. p.4071 - 4077. 1995. (297K)(0.93Bar) kcin=(2.000E+04/0/0)
----   
---- NOTA: Konnov usa para la decomposicion: (8.000E+11/0.0/41.80), de acuerdo con NIST(*) esta reaccion
---- es 8.55 veces menos que la decomposicion a CH3CO, luego se divide Konnov(o Wilk) entre 8 y es el valor que se utiliza!!
----            Wilk case:   8.500E+14/8.55 = 1.000E+14   kcin=(1.000E+14/0.0/58.52) 
----       (*) = Baldwin, R.R.; Keen... et al.
---- kcin=(
C2H3O   =CH2CHO                               1.000E+14 0.0       58.52
----
---- Baldwin, R.R.; Keen, A.; Walker, R.W. Studies of the decomposition of oxirane and of its addition
---- to slowly reacting mixtures of hydrogen and oxygen at 480 C.  J. Chem. Soc. Faraday Trans.1: vol 80, p.435 1984
---- (753 K)(0.08-0.67 Bar)
---- kcin= (8.55 [+,- 3.2] veces "C2H3O=CH2CHO")
---- 8.500E+14; 58.52 =  C2H3O   =CH3CO
C2H3O   =CH3CO                                8.500E+14 0.0       58.52                          
----
---- Konnov.
---- kcin=(8.000E+11/0.0/41.80) 
---- C2H3O   =CH3     +CO                          8.000E+11 0.0       41.80
----
---- Wilk, Richard; Pitz W.; Westbrook C.; Nicholas P. Cernansky. Chemical kinetics modeling of ethene oxidation
---- at low and intermedia temperatures.  23th. p 203-210. 1990.
---- kcin=(8.500E+14/0.0/58.52)  
---- C2H3O   =CH3CO                                8.500E+14 0.0       58.52
----
----
---- RQ 11-11-2004
---- Waddington Mechanism:                         Ref:Tully,F.P.: Chem. Phys. Lett. 143, 5 (1988)
---- C2H4    +OH      =C2H4OH                      1.630E+12 0.0      -2.884
---- C2H4OH  +O2      =O22OH                       1.630E+12 0.0      -2.884
---- O22OH   =CH2O    +CH2O    +OH                 1.630E+12 0.0        0.00
----
----    H  H                             @
----    |  |                             |
---- @--C--C--OH -> C2H4OH (Isomero= CH3-CH-OH)
----    |  |
----    H  H
----
----  Ya definidos:
----                CH2CH2OH = C2H4OH
----                CH3CHOH  = Isomero de CH2CH2OH, ver numeral 30D 
----
---- Atkinson,R., Baulch,D.L., Cox,R.A., Hampson,R.F.,Jr., Kerr,J.A., Troe,J. 
---- Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV.
---- IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry.
---- WEB version December 2000.
OH      +C2H4    +M(1)    =CH2CH2OH+M(1)      5.420E+12  0.00      0.0
                                    LOW       1.190E+27 -3.10      0.0
                                    TROE   0.480  000.0 0000   000.0
----
---- From Konnov:
---- Borisov, A.A., et al. 1991.
CH2CH2OH=CH3CHOH                              1.000E+11  0.00    112.86
----
---- Ref 32, nota 5
---- kcin=(1.000E+09/0.0/72)
CH2CH2OH=CH3     +CH2O                        1.000E+09  0.00     72.0
----
---- From Konnov.
---- Anastasi,C., Simpson,V., Munk,J., Pagsberg,P. UV spectrum and the kinetics and reaction pathways of 
---- the self-reaction of CH2CH2OH radicals. J. Phys. Chem. 94: 6327 (1990)
---- Konnov incluye la isomerizacion de C2H4OH (cambio de la posicion radical) y cada uno de los isomeros 
---- contribuye a la formacion de ethanol en igual medida.
---- kcin=(5.00E+13 cm3/mol s) 
CH2CH2OH+C2H5O   =C2H5OH  +CH3CHO             5.000E+13  0.00      0.0
CH3CHOH +C2H5O   =C2H5OH  +CH3CHO             5.000E+13  0.00      0.0
----
---- 
---- Oxygen Adition (Tomado de C3 subsystem)
---- kcin=(1.000E12/0.0/0)
---- Ref 3,  nota 4 kcin_fwrd=(5.000E+11/ 0.0/-4.6)
---- Ref 32, nota 5 kcin_back=(3.240E+17/-1.0/125.527)
CH2CH2OH+O2      =OOC2OH                      1.000E+12  0.00      0.0
----
---- Decomposition (Tomado de C3H5O2 Reactions) 
---- R-12 �eta Scission for R-O@ - 
---- Uncertainty = 3.16 kcin=(6.310E+13/0.00/81.56)
---- Ref 32, 5 kcin=(1.000E+16/0.0/104.6)  
OOC2OH  =CH2O    +CH2O    +OH                 1.000E+16  0.00    50.60
----
----
************************************************************************
****   7.            C2H5 REACTIONS
************************************************************************
---- 
---- R7 ADDITION OF MOLECULAR OXYGEN -
---- 28b
---- C2H5    +O2      >C2H5O2                      2.600E+12 0.0         0.0
---- INVERSE: R7 ADDITION OF MOLECULAR OXYGEN -
---- C2H5O2  >C2H5    +O2                          4.300E+03 3.76      120.0
----
---- Wagner, A.F.; Slagle, I.R.; Sarzynski, D.; Gutman, D. Experimental and theoretical studies
---- of the C2H5 + O2 reaction kinetics Journal: J. Phys. Chem. vol94 p.1853 1990
---- (300-1000K) (0.01-10.13Bar) (1.4xE+02/(T/298 K)^(-9.85)/162964)
----
---- Kback:
---- kcin_o   =(1.981E+50/-9.85/162.964)   [1.400E+02/(T/298)^(-9.85)/162.964] [cm3/molecule_s/(J/mole)]
---- kcin_inf =(6.347E+17/-0.84/143.009)   [5.300E+15/(T/298)^(-0.84)/143.009] [(s-1)_(J/mole)]
---- C2H5O2  >C2H5    +O2                          6.347E+17 -0.84    143.09
----                                     LOW       3.289E+26 -9.85    162.96
----                                     TROE   0.000  0000.0    00.0     0.0
----
---- Kfwd:
---- kcin_o   =(7.101E+42/-8.24/17.87) [8.020x10-26/(T/298 K)^-8.24/17876 [cm6/molecule2_s/(J/mole)/RT]
---- kcin_inf =(2.240E+10/0.77/2.386)  [2.990x10-12/(T/298 K)^0.770/2386] [cm3/molecule_s/(J/mole)/RT]
---- C2H5    +O2      >C2H5O2                      2.240E+10  0.77     2.386
----
---- C2H5    +O2      +M(1)    =C2H5O2  +M(1)      2.240E+10  0.77     2.386
----                                     LOW       7.101E+42 -8.24     17.87
----                                     TROE   0.000  0000.0    00.0     0.0
----
---- Bozzelli, J.W.; Dean, A.M. Chemical activation analysis of the reaction of C2H5 with O2
---- J. Phys. Chem. vol.94. p.3313. 1990. (250-1200K)(0 - 1.01Bar)
---- kcin=(2.002E+42/-10.30/25.442)   [ 1.09x10-7 (cm3/molecule s) / (T/298 K)^(-10.30) / 25442 ] (J/mole)/RT
C2H5    +O2      =C2H5O2                      2.002E+42-10.3      25.442
----
---- Robert S. Tranter, Raghu Sivaramakrishnan, Kenneth Brezinsky Mark Allendorf.
---- Hifh pressure, high temperature shock tubes studies of ethane pyrolysis and oxidation.
---- PCCP. 2002, vol4, 2001-2010. Experimental!!
----
---- C2H5    +O2      +M(1)    =C2H5O2  +M(1)      2.020E+10  0.98    -0.265
----                                     LOW       8.490E+29 -4.29     0.919
----                                     TROE   0.103   601.0    00.0     0.0
-----
************************************************************************
****   8.            C2H5O  REACTIONS
************************************************************************
----    
************************************************************************
****   9.            C2H5O2 REACTIONS
************************************************************************
----     - R8 INTERNAL H ABSTRACTION -
---- 21b
C2H5O2  >2C2OOH1                              2.080E+12 0.0       138.0
----     - INVERSE: R8 INTERNAL H ABSTRACTION -
2C2OOH1 >C2H5O2                               8.500E+09-0.0988     69.5
----
----     - C1 FORMATION OF O-HETEROCYKLEN -
2C2OOH1 =OXIRAN  +OH                          1.300E+10 0.0        65.5
----
---- RANZI 1994 (EA=ORIGINAL/1000)
---- No encuentro la referencia
---- C2H5O2  +CO      >C2H5O   +CO2                1.000E+14 0.0        24.0
----
----
---- Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T.,
---- Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J. Summary table of evaluated kinetic data
---- for combustion modeling: Supplement 1. Combust. Flame, 1994, v.98, pp.59-79.
---- k = 2.000E+13 exp(- 4750.0 cal/mol /RT) cm3/mol s [1]
C2H5OOH +O       =OH      +C2H5O2             2.000E+13 0.0        19.85
----
----
----     - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- Koriginal=(4.640E+10/0.0/-10.8) from 27b
---- C2H5O2  +HO2     >C2H5OOH +O2                 4.640E+10 0.0     -10.800
---- C2H5OOH +O2      >C2H5O2  +HO2                2.050E+10-0.0893    126.0
----
---- NIST 2000. Atkinson, R.; Baulch, D. 1997 (Bibliografia)
---- C2H5O2  +HO2     >C2H5OOH +O2                 1.632E+11 0.0      -8.314
----
---- Fenter, F.F.; Catoire, V.; Lesclaux, R.; Lightfoot, P.D
---- The ethylperoxy radical: its ultraviolet spectrum, self-reaction, and reaction with HO2,
---- each studied as a function of temperature.
---- J. Phys. Chem., vol.97, p.3530 - 3538, 1993 (Experimental, 1.01Bar, 248-480K)
---- kcin=(9.697E+10/0.0/-10.476)
C2H5O2  +HO2     =C2H5OOH +O2                 9.697E+10 0.0     -10.476
----
---- NIST 2000. Atkinson, R.; Baulch, D. 1997 (Bibliografia)
---- C2H5O2  +HO2     =C2H5OOH +O2                 1.632E+11 0.0      -8.314
----
---- Wilk, R.D., Cernansky, N.P., Pitz, W.J., and Westbrook, C.K.
---- Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study.
---- Combust. Flame, 1989, v. 77, pp. 145-170
---- kcin=(1.150E+11/0/41.8)
---- 22b
C2H5O2  +CH3CHO  >C2H5OOH +CH3CO              1.000E+12 0.0        42.0
C2H5O2  +CH2O    >C2H5OOH +CHO                1.000E+12 0.0        42.0
C2H5O2  +C2H5CHO >C2H5OOH +C2H5CO             1.000E+12 0.0        42.0
----
----     - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
C2H5OOH +CHO     >C2H5O2  +CH2O               2.170E+06 1.01      0.688
C2H5OOH +CH3CO   >C2H5O2  +CH3CHO             9.260E+05 1.22       17.3 
C2H5OOH +C2H5CO  >C2H5O2  +C2H5CHO            1.140E+09 0.267      22.3 
----
----
---- Koriginal_MN_F=(0.165E+12/0.0/0.00)
---- koriginal_MN_B=(1.000E+04/0.0/0.00) 
---- NIST 2000: Villenave, E.; Lesclaux, R.
---- Kinetics of the cross reactions of CH3O2 and C2H5O2 radicals with
---- selected peroxy radicals. J. Phys. Chem, vol 100. p. 14372-14382. 1996.
---- Experimental 298K, 1.01 Bar.
C2H5O2  +CH3O2   =C2H5O   +CH3O    +O2        1.211E+11  0.0       0.00
----
---- koriginial_forw=(0.130E+12/0.0/0.0); kori_back=(0.100E+07/0.0/0.0)
---- NIST 2000: Bauer, D.; Crowley, J.N.; Moortgat, G.K.
---- The UV absorption spectrum of the ethylperoxy radical and
---- its self-reaction kinetics between 218 and 333 K;J. Photochem. Photobiol. A:
---- vol. 65. p.329-344, 1992. Experimental (298K, 0.08-0,2Bar)
C2H5O2  +C2H5O2  >C2H5O   +C2H5O   +O2        2.650E+10  0.0       0.00
C2H5O   +C2H5O   +O2      >C2H5O2  +C2H5O2    0.100E+07  0.0       0.00
----
----     - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- 25b
C2H5O2  +C4H10   >C2H5OOH +P-C4H9             1.680E+13 0.0        85.5
C2H5O2  +C4H10   >C2H5OOH +S-C4H9             1.120E+13 0.0        74.0
----     - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
C2H5OOH +P-C4H9  >C2H5O2  +C4H10              1.130E-12 6.76      -18.1
C2H5OOH +S-C4H9  >C2H5O2  +C4H10              4.440E-13 6.89      -15.2
----
************************************************************************
****   10.            C2H5OOH REACTIONS
************************************************************************
----     - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- 23b
---- C2H5OOH >C2H5O   +OH                          1.100E+16 0.0       182.0
----     - INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- C2H5O   +OH      >C2H5OOH                     9.270E+25 -3.51     20.00
----
---- NIST 2000. CEC 94 Uncertainty=2.0, (400-800K)
C2H5OOH =C2H5O   +OH                          4.000E+15 0.0       179.6
************************************************************************
****   11.            C3H5O1 REACTIONS
****   
************************************************************************
---- Ninguna sugerencia en NIST
----     @ H 
----     | |    
---- O=C-C-C-H    
----   | | |
----   H H H  
----    
---- LT14 BETA SCISSSION FOR O=R@ -
---- No hay formadores de las siguientes dos especies:(se omiten)  
---- 1-2C3O  >CH3     +CH2CO                       3.700E+13 0.0       120.0
---- 3-1C3O  >C2H4    +CHO                         3.700E+13 0.0       120.0
C2H5CO  >CH3     +CH2CO                       3.700E+13 0.0       120.0
----
3C2H4CHO>C2H4    +CHO                         3.700E+13 0.0       120.0
CH3COCH2>CH3     +CH2CO                       3.700E+13 0.0       120.0
---- LT16 SCISSION FROM ACETYLRADICAL -
---- korig=(1.580E+13/0.0/72.0); korig_back=(1.580E+11/0.0/25.00)
---- Watkins, K. W.; Thompson, W. W. (1973) Addition of Ethyl Radicals to
---- Carbon Monoxide. Kinetic and Thermochemical. Properties of the Propionyl Radical.
---- Int. J. Chem. Kinet. 5, 791. (0.01-0.35Bar; 238-278K)
C2H5CO  =C2H5    +CO                          5.890E+12 0.0       60.3
************************************************************************
****   12.            C3H5O2 REACTIONS
************************************************************************
---- Jenkin, M.E.; Cox, R.A.; Emrich, M.; Moortgat, G.K
---- Mechanisms of the Cl-atom-initiated oxidation of acetone and hydroxyacetone in air
---- J. Chem. Soc. Faraday Trans. vol.89. p.2983-2991. 1993. 298K. 0.93Bar
---- kcin=(1.600E+06/0/0)  (1-OC3O2->CH3CO+CH2O)
----           H 
----           |
----      H  H-C-H 
----      |    | 
----  @-O-C----C=O   
----      | 
----      H 
----     - R17 BETA SCISSSION for O=R-O@ -
1-OC3O2 >CH3CO   +CH2O                        0.300E+15  0.0     212.55
3-OC3O1 >CH2CHO  +CH2O                        0.300E+15  0.0     212.55
2-OC3O1 >CH3CHO  +CHO                         0.300E+15  0.0     212.55
----     - INVERSE: R17 BETA SCISSSION for O=R-O@ -
CH3CO   +CH2O    >1-OC3O2                     0.793E+06  1.48    196.65
CH2CHO  +CH2O    >3-OC3O1                     0.793E+06  1.48    196.65
CH3CHO  +CHO     >2-OC3O1                     0.793E+06  1.48    196.65
************************************************************************
****   13.            C3H6O REACTIONS
************************************************************************
******************************************
****     01.   C3H6O Consumption
******************************************
----  ----O----    
----  |       |  => OXETAN 
----  C---C---C 
----
---- Decomposition
---- korig_fwd=(2.565E+16/0.0/263.01); kcin_back=(5.130E+15/0.0/264.00)
---- NIST 2000: Zalotai, L.; Hunyadi-Zoltan, Zs.; Berces, T.; Marta, F.
---- Kinetics of gas phase decomposition of oxetan and oxetan-2,2-d2
---- Int. J. Chem. Kinet. vol.15; p.505;1985. Uncerta=2.04
OXETAN  >C2H4    +CH2O                        2.630E+15  0.0     259.41
---- Inverse Oxetan
---- 32b: Clarke, M.J.; Holbrook, K.A.
---- Thermolysis of 2-Ethyloxetan. J. Chem. Soc. Faraday Trans. 1:
---- vol.73. p.890. 1977. (699-752K; 0.0, 0.04Bar). Unceertaninty=1.91
CH2O    +C2H4    >OXETAN                      9.080E+28 -5.28    278.0
----
---- H atom abstraction
---- Duke, M.G.; Holbrook, K.A
---- Reactions of methyl radicals with oxetan, 2-methyloxetan and 2,4-dimethyloxetan
---- J. Chem. Soc. Faraday Trans. 1: vol76, p.1232, 1980. 373 - 465K; 0.07-0.1Bar.
---- Uncertainty=1.55.
OXETAN  +O2      =2C3H5OCY+HO2                4.000E+13  0.0     257.32
OXETAN  +H       =2C3H5OCY+H2                 2.000E+13  0.0      34.73
OXETAN  +O       =2C3H5OCY+OH                 1.910E+12  0.0      21.97
OXETAN  +OH      =2C3H5OCY+H2O                4.100E+06  2.0      -7.02
OXETAN  +HO2     =2C3H5OCY+H2O2               2.900E+04  2.6      58.20
OXETAN  +CH3     =2C3H5OCY+CH4                1.950E+11  0.0      35.23
************************************************************************
****   14.            C3H6O3 REACTIONS
************************************************************************
----     H   
----     |  
----   H-C-OOH   
----     |  
---- CH3-C=O       
----  
---- korig=(0.400E+16/0.0/125.52) 
---- NIST 2000, Devush, S.S.; Prisyazhnyuk, Z.P.; Koval'skaya, A.M.
---- Kinetics of the thermal gas phase decomposition of C1-C4 organic peracids
---- Kinet. Catal. vol 24.p.1098, 1983. (403-513K; 1.1 Bar) Uncertainty=5.0
---- kcin=(1.35E+13/0.0/138.852, +/-13.88KJ)
----     - R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
2OC3HP1 >1-OC3O2 +OH                          0.400E+16  0.0     125.52
1OC3HP3 >3-OC3O1 +OH                          0.400E+16  0.0     125.52
1OC3HP2 >2-OC3O1 +OH                          0.400E+16  0.0     125.52
----     - INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
1-OC3O2 +OH      >2OC3HP1                     0.324E+09  0.991   -58.58
3-OC3O1 +OH      >1OC3HP3                     0.324E+09  0.991   -58.58
2-OC3O1 +OH      >1OC3HP2                     0.324E+09  0.991   -58.58
************************************************************************
****   15.            C3H7 REACTIONS
************************************************************************
---- LT16 SCISSION FROM ACETYLRADICAL -
---- korig_f=(1.580E+13/0.0/72.0)   
---- Cadman, P.; Dodwell, C.; Trotman-Dickenson, A.F.; White, A.J.
---- The kinetics of hydrogen abstraction by difluoroamino-radicals,
---- from propionaldehyde, and n- and iso-butyraldehyde, and their acyl radical decompositions.
---- J. Chem. Soc. A:. p.2371; 1970. Uncertainty=1.1; (353-423K; 0,0-0,04Bar)
C3H7CO  =N-C3H7  +CO                          3.160E+12 0.0       39.82
---- C3H7CO  >N-C3H7  +CO                          1.580E+13 0.0       72.00    
---- INVERSE: LT16 SCISSION FROM ACETYLRADICAL -
---- N-C3H7  +CO      >C3H7CO                      1.580E+11 0.0       25.0
----    
---- R7 ADDITION OF MOLECULAR OXYGEN -
---- Atkinson, Baulch.. 1994.(I-C3H7+O2>I-C3H7O2) kcin=(6.62E+12/0/0)
---- Slagle, I.R.; Park 1985.(N-C3H7+O2>N-C3H7O2) kcin=(3.40E+12/0/0)
---- NIST 2000: Ruiz, R.P.; Bayes, K.D.
---- Rates of reaction of propyl radicals with molecular oxygen.
---- J. Phys. Chem. vol. 88. p.2592. 1984. (298K; 0.01Bar)
I-C3H7  +O2      =I-C3H7O2                    8.500E+12 0.0         0.0
N-C3H7  +O2      =N-C3H7O2                    3.300E+12 0.0         0.0
---- INVERSE: R7 ADDITION OF MOLECULAR OXYGEN -
---- I-C3H7O2>I-C3H7  +O2                          1.550E-04 5.75      119.0
---- N-C3H7O2>N-C3H7  +O2                          2.060E-05 6.07      119.0
---- Tsang 
---- N-C3H7  +O2      =N-C3H7O2                    1.630E+19-2.7         0.0
---- I-C3H7  +O2      =I-C3H7O2                    8.500E+12 0.0         0.0
---- Atkinson    
---- N-C3H7  +O2      =N-C3H7O2                    3.400E+12 0.0         0.0
---- I-C3H7  +O2      =I-C3H7O2                    6.620E+12 0.0         0.0
----  
---- NIST 2000:Reacciones entre radicales
---- Tsang 1988. 
---- Uncertainty=3.0
N-C3H7  +C2H3    =C2H2    +C3H8               1.211E+12 0.0         0.0
************************************************************************
****   16.            C3H7O  REACTIONS
************************************************************************
---- korig_N=(0.170E+14/0.0/74.48)
---- korig_I=(0.150E+14/0.0/61.92)
----     - R12 BETA SCISSSION for R-O@ - 
---- NIST 2000: Baldwin 1977. Uncertainty=3.16
N-C3H7O =C2H5    +CH2O                        6.310E+13  0.0      81.56
---- NIST 2000: Baldwin 1977. The Gas-Phase Decomposition of Alkoxy Radicals
---- Int. J. Chem. Kinet. vol. 11. p977. 1979. (1.01Bar; 393-433K) Measure!!  kcin=(3.98E+14/0.0/72.003)      
I-C3H7O =CH3CHO  +CH3                         3.980E+14  0.0      72.00     
----     - INVERSE R12 BETA SCISSSION for R-O@ -
----C2H5    +CH2O    >N-C3H7O                     0.200E+06  1.0      41.09
----CH3CHO  +CH3     >I-C3H7O                     0.200E+06  1.0      41.09
----
---- korig=(1.750E+11/0.0/7.31)
---- Heicklen, J.The decomposition of alkyl nitrites and the reactions of alkoxyl radicals
---- Adv. Photochem.vol.14. p 177. 1988. 250-361K. Uncertainty=1.3
N-C3H7O +O2      =C2H5CHO +HO2                1.951E+11 0.0       8.281
----C2H5CHO +HO2     >N-C3H7O +O2                 7.080E+03 1.94     134.0
----
---- NIST 2000:Balla, R.J.; Nelson, H.H.; McDonald, J.R (ACETONA!!!)
---- Kinetics of the reactions of isopropoxy radicals with NO, NO2, and O2
---- Chem. Phys. vol.99. p.323. 1985. (298-383K, 0.07Bar).
I-C3H7O +O2      =CH3COCH3+HO2                9.095E+09 0.0       1.630
----
---- H-Atom Abstraction, decomposition
---- NIST 2000: Batt, L.
---- The Gas-Phase Decomposition of Alkoxy Radicals. Int. J. Chem. Kinet
---- vol.11, p.977, 1979.  1.01Bar, (393-433K) Uncertainty = 3.16 Measure!!
I-C3H7O =CH3COCH3+H                           2.000E+14  0.0      89.79
---- 
---- Decomposition
---- 
---- No hay datos de esta reaccion se saca !!!
---- N-C3H7O >C2H5CHO +H                           0.100E+15  0.0       0.00
---- C2H5CHO +H       >N-C3H7O                     0.104E+13 -0.146   -62.76
************************************************************************
****   17.            C3H7O2 REACTIONS
************************************************************************
---- Nota de Bibliografia:   
---- R.D. Wilk, N.P. Cernansky and R.S. Cohen. "The Oxidation of Propane at Low and Transition Temperatures"
---- Combustion Sci and Technology. 1986 Vol 49 pp 41-78    
---- Proceso de Isomerization: 
---- C3H7O2  -> C3H6OOH 
---- C3H6OOH -> C3H6O  +  OH     Aca tengo formacion de Oxido de Propeno, en los exp.1o. tengo formacion de
----       propeno y luego el oxido, luego este paso no parece muy importante cuando se considera solo el propano como
----       combustible, y solo debe considerarse cuando el combustible es un alcano superior.  
----       Debo incluir este paso en mi mecanismo, pues es uno de los principlaes productos !!!!
---- C3H6OOH +  O2     -> O2C3H6OOH  
---- O2C3H6OOH -> HO2C3H5O + OH 
---- HO2C3H5O  -> C3H5O2   + OH    
---- 
----
----     - R8 INTERNAL H ABSTRACTION -
---- 21b
I-C3H7O2>1C3OOH2                              4.160E+12 0.0       138.0
N-C3H7O2>3C3OOH1                              2.600E+11 0.0       110.0
N-C3H7O2>2C3OOH1                              1.390E+12 0.0       118.0
----     - INVERSE: R8 INTERNAL H ABSTRACTION -
1C3OOH2 >I-C3H7O2                             2.220E+10-0.138      69.6
2C3OOH1 >N-C3H7O2                             2.980E+09 0.0447     63.8
3C3OOH1 >N-C3H7O2                             0.100E+14  0.0     167.36
---- 
----     - C1 FORMATION OF O-HETEROCYKLEN -
----   ---O--
----   |    |         => 2MOXI  => Epoxypropane => Methyloxirane => Propylene Oxide  
----  CH2---CH--CH3   
----   
---- 21
1C3OOH2 =2MOXI   +OH                          1.300E+10 0.0        65.5
2C3OOH1 =2MOXI   +OH                          1.300E+10 0.0        65.5
3C3OOH1 =OXETAN  +OH                          1.300E+10 0.0        62.9
----     - LT6 FORMATION OF C-fuel-ALKEN -
1C3OOH2 =C3H6    +HO2                         1.000E+09 0.0        31.4  
2C3OOH1 =C3H6    +HO2                         1.000E+09 0.0        31.4
----
----     - FORMATION OF O-HETEROCYKLEN -
---- NIST 2000: Grigoryan, R.R.; Arsentiev, S.D.; Mantashyan, A.A
---- Propylene epoxidation in the gas-phase oxidation of propane-propylene mixtures
---- React. Kinet. Catal. Lett. vol 21, p.347. 1982.
---- 633K; 0.28-0.36 BAR
N-C3H7O2+C3H6    =N-C3H7O +2MOXI             1.698E+07 0.0         0.0
---- NIST:2000. Sway, M.I.; Waddington, D.J.
---- Reactions of oxygenated radicals in the gas phase. Part 12.
---- The reactions of isopropylperoxy radical and alkenes
---- J. Chem. Soc. Perkin Trans. 2. p.139, 1983
---- 303-408K, 1 Bar
I-C3H7O2+C3H6    =I-C3H7O +2MOXI              8.321E+11 0.0       67.7
----
---- 11 Nov 2004
---- NIST
---- Lifshitz, A.; Tamburu, C. Isomerization and decomposition of propylene oxide. 
---- Studies with a single-pulse shock tube. J. Phys. Chem. Vol:98; 1161-1170 1994
---- 835-1160K ; 2.03 Bar.
---- kcin1=(2.45x1013 (s-1) e-58.42 (kcal/mole)/RT)
---- kcin2=(2.45x1013 (s-1) e-58.82 (kcal/mole)/RT)
---- kcin3=(1.82x1014 (s-1) e-58.42 (kcal/mole)/RT)
2MOXI   =CHO     +C2H5                        2.450E+13 0.0      244.19
2MOXI   =CH3     +CH2CHO                      2.450E+13 0.0      245.86
2MOXI   =C2H5CHO                              1.820E+14 0.0      244.19
----
----  
**** INICIO DE SECCION 1     
---- Todas estas reacciones funcionan correctamente!!!!
----
----     - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- 22b, nur HO2 27b
---- NIST 2000: Wilk, R.D., Cernansky, N.P., Pitz, W.J., and Westbrook, C.K.
---- Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study.
---- Combust. Flame, 1989, v. 77, pp. 145-1700
I-C3H7O2+HO2     >IC3H7OOH+O2                 4.640E+10 0.0       -10.8
I-C3H7O2+CH2O    >IC3H7OOH+CHO                1.000E+12 0.0        42.0
I-C3H7O2+CH3CHO  >IC3H7OOH+CH3CO              1.000E+12 0.0        42.0
I-C3H7O2+C2H5CHO >IC3H7OOH+C2H5CO             1.000E+12 0.0        42.0
----
I-C3H7O2+N-C3H7  =I-C3H7O +N-C3H7O            3.800E+12 0.0       -5.06
I-C3H7O2+I-C3H7  =I-C3H7O +I-C3H7O            3.800E+12 0.0       -5.06
I-C3H7O2+CH3     =I-C3H7O +CH3O               3.800E+12 0.0       -5.06
I-C3H7O2+C3H6    =IC3H7OOH+C3H5               3.200E+11 0.0       62.28
---- Esta estaba habilitada  
I-C3H7O2+CH4     =IC3H7OOH+CH3                1.140E+13 0.0       85.52
---- Hasta aca la habilitada 
I-C3H7O2+CH3OH   =IC3H7OOH+CH2OH              6.300E+12 0.0       80.92
---- Konnov 1999
I-C3H7O2+C2H4    =IC3H7OOH+C2H3               7.100E+11 0.0      104.50
---- 
N-C3H7O2+HO2     >NC3H7OOH+O2                 4.640E+10 0.0       -10.8
N-C3H7O2+CH2O    >NC3H7OOH+CHO                1.000E+12 0.0        42.0
N-C3H7O2+CH3CHO  >NC3H7OOH+CH3CO              1.000E+12 0.0        42.0
N-C3H7O2+C2H5CHO >NC3H7OOH+C2H5CO             1.000E+12 0.0        42.0
---- 
N-C3H7O2+N-C3H7  =N-C3H7O +N-C3H7O            3.800E+12 0.0       -5.06
N-C3H7O2+I-C3H7  =N-C3H7O +I-C3H7O            3.800E+12 0.0       -5.06
N-C3H7O2+CH3     =N-C3H7O +CH3O               3.800E+12 0.0       -5.06
N-C3H7O2+C3H6    =NC3H7OOH+C3H5               3.200E+11 0.0       62.28
N-C3H7O2+CH4     =NC3H7OOH+CH3                1.140E+13 0.0       85.52
N-C3H7O2+CH3OH   =NC3H7OOH+CH2OH              6.300E+12 0.0       80.92
---- Konnov 1999
N-C3H7O2+C2H4    >NC3H7OOH+C2H3               7.100E+11 0.0      104.50
---- 
---- Estas reacciones corresponden a las inversas originales !!
----     - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
IC3H7OOH+O2      >I-C3H7O2+HO2                2.540E+10-0.121     126.0
IC3H7OOH+CHO     >I-C3H7O2+CH2O               2.680E+06 0.982     0.785
IC3H7OOH+CH3CO   >I-C3H7O2+CH3CHO             1.150E+06 1.18       17.4
IC3H7OOH+C2H5CO  >I-C3H7O2+C2H5CHO            1.410E+09 0.235      22.4
----
NC3H7OOH+O2      >N-C3H7O2+HO2                2.050E+10-0.0893    126.0
NC3H7OOH+CHO     >N-C3H7O2+CH2O               2.170E+06 1.01      0.688
NC3H7OOH+CH3CO   >N-C3H7O2+CH3CHO             9.260E+05 1.22       17.3
NC3H7OOH+C2H5CO  >N-C3H7O2+C2H5CHO            1.410E+09 0.267      22.3
----
----  
**** FINAL DE SECCION 1 
----   
----     - R13 ADDITION OF MOLECULAR OXYGEN -
----
----            H OOH H 
----            |  |  |   
----   @--O--O--C--C--C--H   => 1OO3OOH2 
----            |  |  |   
----            H  H  H  
----     
2C3OOH1 +O2      >2OO3OOH1                    0.100E+13  0.0       0.00
3C3OOH1 +O2      >3OO3OOH1                    0.100E+13  0.0       0.00
1C3OOH2 +O2      >1OO3OOH2                    0.100E+13  0.0       0.00
----
----   INVERSE: R13 ADDITION OF MOLECULAR OXYGEN -
---- 1OO3OOH2>1C3OOH2 +O2                          0.217E+15 -1.2     122.17
---- 2OO3OOH1>3C3OOH1 +O2                          0.217E+15 -1.2     122.17
---- 3OO3OOH1>2C3OOH1 +O2                          0.217E+15 -1.2     122.17
----
----
---- Aplico las igualdad 
---- Decomposition
N-C3H7O2=CH2O    +C2H5O                       0.100E+10  0.0      83.68
N-C3H7O2=C2H5CHO +OH                          0.100E+10  0.0      83.68
I-C3H7O2=CH3COCH3+OH                          0.100E+10  0.0      83.68
I-C3H7O2=CH2O    +C2H5O                       0.100E+10  0.0      83.68
---- Inverse Decomposition
----(*)CH2O    +C2H5O   >N-C3H7O2                    0.100E+01  0.0       0.00
----(*)C2H5CHO +OH      >N-C3H7O2                    0.331E+02  1.37    199.58
----(*)CH3COCH3+OH      >I-C3H7O2                    0.182E+01 17.1     212.97
----(*)CH2O    +C2H5O   >I-C3H7O2                    1.000E+00  0.0       0.00
----
**** INICIO SECCION 2    
---- Estas reacciones funcoinan correctamente !!!
----   
---- Decomposition
---- korigin_f=(0.130E+12/0.0/0.00)
---- NIST 2000: Adachi, H.; Basco, N.
---- Spectra of Propylperoxy Radicals and Rate Constants for Mutual Interaction
---- Int. J. Chem. Kinet.vol 14. p 1125 1982 . 298K 0.49 Bar kcin=(1.999E+11/0/0) Experimental
---- NIST 2000: Atkinson 1997
---- kcin=(1.813E+11/0.0/0.00)   
N-C3H7O2+N-C3H7O2>N-C3H7O +N-C3H7O +O2        0.130E+12  0.0       0.00
N-C3H7O2+I-C3H7O2>N-C3H7O +I-C3H7O +O2        0.100E+12  0.0       0.00
N-C3H7O2+C2H5O2  >N-C3H7O +C2H5O   +O2        0.130E+12  0.0       0.00
N-C3H7O2+CH3O2   >N-C3H7O +CH3O    +O2        0.165E+12  0.0       0.00
---- Inverse Decomposition
N-C3H7O +N-C3H7O +O2      >N-C3H7O2+N-C3H7O2  0.381E+01  2.61      1.57  
N-C3H7O +I-C3H7O +O2      >N-C3H7O2+I-C3H7O2  1.000E+00  0.0       0.00
N-C3H7O +C2H5O   +O2      >N-C3H7O2+C2H5O2    1.000E+00  0.0       0.00
N-C3H7O +CH3O    +O2      >N-C3H7O2+CH3O2     1.000E+00  0.0       0.00
----   
**** FINAL SECCION 2
----   
---- Decomposition  
---- NIST 2000: Wallington, T.J.; Dagaut, P.; Kurylo, M.J.
---- Ultraviolet absorption cross sections and reaction kinetics and mechanisms
---- for peroxy radicals in the gas phase. Chem. Rev.vol. 92. p.667-710. 1992.
---- kcin-(1.391E+12/0.0/21.28)    
I-C3H7O2+I-C3H7O2>I-C3H7O +I-C3H7O +O2        0.700E+11  0.0       0.00
---- NIST 2000: Atkinson 1997
---- kcin(0.100E+12/0.0/0.0)    
I-C3H7O2+C2H5O2  >I-C3H7O +C2H5O   +O2        0.100E+12  0.0       0.00
---- NIST 2000: Alcock, W.G.; Mile, B.
---- The Gas-Phase Reactions of Alkylperoxy Radicals Generated by a Photochemical Technique
---- CandF vol. 24, p.125, 1975. 373K, 0.06-0.67 Bar.
---- I-C3H7O2+CH3O2>Products. (100% this channel!)
---- kcin=(6.204E+11/0.0/0.0)    
I-C3H7O2+CH3O2   >I-C3H7O +CH3O    +O2        0.135E+12  0.0       0.00
----
---- Inverse Decomposition 
I-C3H7O +I-C3H7O +O2      >I-C3H7O2+I-C3H7O2  0.200E+04  1.66     33.35
I-C3H7O +C2H5O   +O2      >I-C3H7O2+C2H5O2    1.000E+04  0.0       0.00
I-C3H7O +CH3O    +O2      >I-C3H7O2+CH3O2     1.000E+04  0.0       0.00
----  
----  
**** INICIO SECCION 3
---- Todas las reacciones funcionan !!! 
----     - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- Konnov, 1999:
---- kcini1=(6.03E+12/0/81.01)
---- kcini2=(1.99E+12/0/71.27)
---- kcini3=(6.03E+12/0/81.01)
---- kcini4=(1.99E+12/0/71.27)
---- Las dos primeras estaban 
I-C3H7O2+C3H8    >IC3H7OOH+N-C3H7             6.000E+12 0.0       58.6
I-C3H7O2+C3H8    >IC3H7OOH+I-C3H7             2.000E+12 0.0       46.101
N-C3H7O2+C3H8    >NC3H7OOH+N-C3H7             6.000E+12 0.0       58.6
N-C3H7O2+C3H8    >NC3H7OOH+I-C3H7             2.000E+12 0.0       46.101
----     - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
IC3H7OOH+N-C3H7  >I-C3H7O2+C3H8               6.000E+12 0.0       58.6
IC3H7OOH+I-C3H7  >I-C3H7O2+C3H8               2.000E+12 0.0       46.101
NC3H7OOH+N-C3H7  >N-C3H7O2+C3H8               6.000E+12 0.0       58.6
NC3H7OOH+I-C3H7  >N-C3H7O2+C3H8               2.000E+12 0.0       46.101
-----
**** FINAL SECCION 3
----
---- 
************************************************************************
****   18.            C3H8O2 REACTIONS
************************************************************************
----     - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- Kcin_orig_1:(0.830E+15/0.0/179.91)  
---- Kcin_orig_2:(0.830E+15/0.0/179.91)
---- Konnov 1999 :
---- kcin1= (4.000E+15/0/179.7)
---- kcin2= (4.000E+15/0/179.7)
---- Kirk, A.D.; Knox, J.H.
---- The pyrolysis of alkyl hydroperoxides in the gas phase
---- Trans. Faraday Soc. vol. 56; p.1296-1303. 1960 Experimental
---- 553 - 653 K. Uncertainty=2.0.
---- kcin=(1.580E+15/0/167.121)
---- Se mantienen al originial.
---- 24 th.
---- 24th. Symposium (International) on Combustion, 1992. p.637-643
---- The pyrolysis of organic hydroperoxides (ROOH)
---- K.A. Sahetchian, et al.
---- 23b
NC3H7OOH=N-C3H7O +OH                          1.100E+16 0.0       182.0
IC3H7OOH=I-C3H7O +OH                          0.830E+15 0.0      179.91
---- 
---- Inversas para estas nuevas reacciones !!!!
---- INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- N-C3H7O +OH      >NC3H7OOH                    6.830E+16 -0.779     4.81
---- I-C3H7O +OH      >IC3H7OOH                    1.000E+11  0.0  0.00000042
----
************************************************************************
****   19.            C3H7O4 REACTIONS
************************************************************************
----      
----
----            H OOH H
----            |  |  |
----   H--O--O--C--C--C--H   => 1-2C3HP  
----            |  |  |
----            H  @  H  
----
----     
----     - R14 INTERNAL H ABSTRACTION -
1OO3OOH2=1-2C3HP                              1.000E+11 0.0       56.43
3OO3OOH1=1-3C3HP                              2.000E+11 0.0       46.398
2OO3OOH1=1-2C3HP                              2.000E+11 0.0       71.06
----     - INVERSE: R14 INTERNAL H ABSTRACTION -
---- 1-2C3HP >1OO3OOH2                             1.000E+11 0.0       43.4
---- 1-3C3HP >3OO3OOH1                             2.000E+11 0.0       27.6
---- 1-2C3HP >2OO3OOH1                             2.000E+11 0.0       52.3
----     - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS -
1-2C3HP >2OC3HP1 +OH                          1.000E+09 0.0       31.4
1-3C3HP >1OC3HP3 +OH                          1.000E+09 0.0       31.4
1-2C3HP >1OC3HP2 +OH                          1.000E+09 0.0       31.4
************************************************************************
****   20.            C3H7OOH REACTIONS
************************************************************************
----  Incluidas en C3H8O2 !!!!      
******************************************
****     22.   C3H5O Reactions
******************************************
---- Thermal decomposition
2C3H5OCY         =C2H4    +CHO                8.000E+10  0.0     146.44
---- Reactions with CH3    
2C3H5OCY+CH3     =C2H4    +CH3CHO             1.000E+13  0.0       0.00
2C3H5OCY+CH3     =C3H6    +CH2O               2.000E+13  0.0       0.00
******************************************
************************************************************************
****   23.            C3H6O1 REACTIONS
************************************************************************
---- Ernst, J.; Spindler, K.; Wagner, H.Gg.
---- Untersuchungen zum Thermischen Zerfall von Acetaldehyd und Aceton
---- Ber. Bunsenges. Phys. Chem. vol.80.p.645, 1976. (1350-1659K; 0.2-73.99Bar)
---- 30b
CH3COCH3=CH2CO   +CH4                         2.610E+11  0.0     191.00
CH3COCH3=CO      +C2H6                        3.500E+14  0.0     174.00
CH3COCH3=CH3CO   +CH3                         2.700E+16  0.0     342.00
---- 31b
-----CH3CO   +CH3     >CH3COCH3                    2.250E+21 -2.60    191.00
-----CH2CO   +CH4     >CH3COCH3                    5.000E+18 -2.77    120.00
-----C2H6    +CO      >CH3COCH3                    5.810E+21 -2.68    171.00
---- 
----     - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
----26b
---- Kcin_orig_1=(1.000E+12/0.0/42.0)    
---- kcin_orig_2=(2.000E+13/0.5/175.0)
---- NIST 2000, Baldwin, 1979
---- Rate constants for reactions of HO2 radicals with alkanes, aldehydes, and related compounds
C2H5CHO +HO2     =C2H5CO  +H2O2               1.520E+09 0.0        0.0
---- Produce error numerico   
----C2H5CHO +O2      =C2H5CO  +HO2                8.070E+01 0.0        0.0    
----
---- Atkinson, 1997.
C2H5CHO +OH      =C2H5CO  +H2O                1.210E+13 0.0        0.0
C2H5CHO +CH3O2   =C2H5CO  +CH3O2H             1.000E+12 0.0       42.0
C2H5CHO +CH3     =C2H5CO  +CH4                2.200E+11 0.0       48.6
---- NIST 2000: Pendiente, Singleton, D. L.; Irwin, R. S.; Cvetanovic, R. J. (1977)
---- Arrhenius Parameters for the Reactions of O(3P) Atoms with Several Aldehydes
---- and the Trend in Aldehydic C-H Bond Dissociation Energies.
---- J. Chem. 55, 3321. kcin=(5.680E+12/0/6.430)
C2H5CHO +H       =C2H5CO  +H2                 9.380E+06 2.0       32.2
---- kcin_orig=(7.270E+05/2.4/23.01)    
C2H5CHO +O       =C2H5CO  +OH                 5.680E+12 0.0      6.437
----
---- NIST 2000 Peter, A., Acs, G., Horvath, I., Huhn, P. 
---- Decomposition of propionaldehyde initiated by the thermal decomposition of azoethane. 
---- Acta Chim. Hung. 108, 235 . 1981  
C2H5CHO +C2H5    =C2H5CO  +C2H6               5.000E+10 0.0     26.292
---- 
----     - INVERSE EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- 22b 36b 37b Corresponden a las cieticas originales  
----C2H5CO  +HO2     >C2H5CHO +O2                 5.150E+10 0.856     18.6
----C2H5CO  +CH3O2H  >C2H5CHO +CH3O2              6.190E+02 2.48      35.3
----C2H5CO  +H2O2    >C2H5CHO +HO2                3.020E+14 -0.92    517.0
----C2H5CO  +H2O     >C2H5CHO +OH                 1.440E+14-0.38     141.0
----C2H5CO  +CH4     >C2H5CHO +CH3                0.000E+00 0.0       00.0
----C2H5CO  +OH      >C2H5CHO +O                  0.000E+00 0.0       00.0
----C2H5CO  +H2      >C2H5CHO +H                  0.000E+00 0.0       00.0
************************************************************************
****   24.            C4H7O1 REACTIONS
****   Raul:  En el analisis de flujo no existen formadores. Se omiten
************************************************************************
----      
----    H H H H 
----    | | | | 
----  O=C-C-C-C-H  -> 1-3C4O   
----      | | |   
----      H H H 
----     
----     - LT14 BETA SCISSSION FOR O=R@ -
---- 1-3C4O  >CH3CO   +C2H4                        3.700E+13 0.0       120.0
---- 1-2C4O  >C2H5    +CH2CO                       3.700E+13 0.0       120.0
---- 4-1C4O  >CH2CHO  +C2H4                        3.700E+13 0.0       120.0
C3H7CO  =C2H5    +CH2CO                       3.700E+13 0.0       120.0
************************************************************************
****   25.            C4H7O2 REACTIONS
************************************************************************
----        
----    
----      H O H H 
----      | | | |  
----    O=C-C-C-C-H  -> 2-OC4O1   
----        | | |  
----        H H H 
----    
----    
----     - R17 BETA SCISSSION for O=R-O@ -
---- 4-OC4O2 =CH3COCH2+CH2O                        2.000E+13 0.0       62.8
---- 1-OC4O2 =C2H5CO  +CH2O                        2.000E+13 0.0       62.8
---- 3-OC4O2 =CH3CHO  +CH3CO                       2.000E+13 0.0       62.8
---- 4-OC4O1 =3C2H4CHO+CH2O                        2.000E+13 0.0       62.8
---- 3-OC4O1 =CH3CHO  +CH2CHO                      2.000E+13 0.0       62.8
---- 2-OC4O1 =C2H5CHO +CHO                         2.000E+13 0.0       62.8
----
4-OC4O2 >CH3COCH2+CH2O                        2.000E+13 0.0       62.8
1-OC4O2 >C2H5CO  +CH2O                        2.000E+13 0.0       62.8
3-OC4O2 >CH3CHO  +CH3CO                       2.000E+13 0.0       62.8
4-OC4O1 >3C2H4CHO+CH2O                        2.000E+13 0.0       62.8
3-OC4O1 >CH3CHO  +CH2CHO                      2.000E+13 0.0       62.8
2-OC4O1 >C2H5CHO +CHO                         2.000E+13 0.0       62.8
----
----
---- SE INCLUYEN LAS REACCIONES INVERSAS VERIFICAR PARAMETROS CINETICOS
---- INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
CH3COCH2+CH2O    >4-OC4O2                     2.000E+11 0.0        0.0
C2H5CO  +CH2O    >1-OC4O2                     2.000E+11 0.0        0.0
CH3CHO  +CH3CO   >3-OC4O2                     2.000E+11 0.0        0.0
3C2H4CHO+CH2O    >4-OC4O1                     2.000E+11 0.0        0.0
CH3CHO  +CH2CHO  >3-OC4O1                     2.000E+11 0.0        0.0
C2H5CHO +CHO     >2-OC4O1                     2.000E+11 0.0        0.0
************************************************************************
****   26.            C4H8O  REACTIONS
************************************************************************
----       
----     H  ---O---  H 
----     |  |     |  |      
----   H-C--C-----C--C-H  -> 2-3MOXI     
----     |  |     |  |  
----     H  H     H  H  
----      
----      
---- NIST 2000: Zalotai, L.; Berces, T.; Marta, F.
---- Kinetics and energy transfer in the thermal decomposition of 2-methyloxetane
---- and 3-methyloxetane. J. Chem. Soc. Faraday Trans. 1:
---- vol.86, p.21.00. 1990. (660 - 760 K; 0.01-0.03 Bar). Uncer=1.32
---- 2-3MOXI analog dem Abbau von 2MOXI
2-3MOXI >C3H6    +CH2O                        3.390E+14 0.0     249.43
----
----     ---O---     H  H
----     |     |     |  |
----   H-C-----C-----C--C-H  -> 2EOXI "Ethyloxirane"   
----     |     |     |  |
----     H     H     H  H
----
---- NIST 2000: Zalotai, L.; Berces, T.; Marta, F.
---- Kinetics and energy transfer in the thermal decomposition of 2-methyloxetane
---- and 3-methyloxetane. J. Chem. Soc. Faraday Trans. 1:
---- vol.86, p.21.00. 1990. (660 - 760 K; 0.01-0.03 Bar). Uncer=1.32
2EOXI   >C3H6    +CH2O                        3.390E+14 0.0     249.43
----
---- 11-11-2004 Salen !
---- NIST 2000: Flowers, M.C.; Penny, D.E.
---- Kinetics of the Thermal Gas-phase Decomposition of 1,2-Epoxybutane
---- J. Chem. Soc. Faraday Trans. 1. vol 71, p.851. 1975.
---- 2EOXI   >NC3H7CHO                             8.910E+13 0.0     238.40
---- 2EOXI   >IC3H7CHO                             2.090E+13 0.0     220.58
---- Articulo: 2EOXI   >2C4H8O                               1.150E+12 0.0       0.00
----
---- NIST, 2000: Wallington, T.J.; Kurylo, M.J.
---- Flash photolysis resonance fluorescence investigation of the gas-phase
---- reactions of OH radicals with a series of aliphatic ketones over the
---- temperature range 240-440 K. J. Phys. Chem. vol 91. 5050. 1987
2EOXI   +OH      >2EOXIYL +H2O                1.150E+12 0.0       0.00
----
---- MECANISMO DE NANCY, F. BATTIN-LECLERC AND P. BARBE 17 MARCH 1997
2EOXI   +H       >H2      +CH2CO   +C2H5      2.7E+07    2.0    1.1960  
2EOXI   +HO2     >H2O2    +CH2CO   +C2H5      1.2E+12    0.0    3.7081  
2EOXI   +C2H5    >C2H6    +CH2CO   +C2H5      6.0E+11    0.0    2.6316  
2EOXI   +OH      >H2O     +CH2CO   +C2H5      7.8E+06    2.0    -0.183  
----
2EOXIYL >CH2CHO  +C2H4                        2.0E+13    0.0    28.699
----
---- (NIST Datenbank) , 
----
----     ------O------  
----     |           | 
----     |     H     |  H 
----     |     |     |  |
----   H-C-----C-----C--C-H  -> 2MOXE     
----     |     |     |  |
----     H     H     H  H
----
2MOXE   >C3H6    +CH2O                        3.390E+14 0.0     249.43
----
---- THF
---- -----O----
---- |        |
---- C--C--C--C
---- NIST 2000: Schliephake, V.; Mix, K.-H.; Wagner, H.Gg
---- Investigations of the kinetics of the reactions of tetrahydrofurane,
---- tetrahydropyrane, cyclopentanone and cyclohexanone with atomic oxygen
---- Z. Phys. Chem. (Munich). vol. 150. p. 1. 1986. Experimentl (295-500K;0 Bar)
THF     +O       >THFYL   +OH                 7.829E+13 0.0       15.80
---- NIST: 2000, 86ATK2. Uncertainty=1.3
THF     +OH      >THFYL   +H2O                9.040E+12 0.0        0.00
---- NIST 2000: Lifshitz, A.; Bidani, M.; Bidani, S.
---- Thermal reactions of cyclic ethers at high temperatures. 2.
---- Pyrolysis of tetrahydrofuran behind reflected shocks
---- J. Phys. Chem. vol. 90. p3422, 1982. (1070-1530K; 2.13-8.61Bar).
---- Para la 2 reaccion originalmente:(THF>C2H4+CH2OCH2) pasa a (THF>C2H4+OXIRAN)
THF     >C3H6    +CH2O                        8.240E+15 0.0      347.27
THF     >C2H4    +OXIRAN                      3.300E+16 0.0      347.27
----
---- Reacciones Nancy F. Battin, Leclerc and P. Barbe 17 march 1997 
---- Methathesis    
THF     +H       >H2      +THFYL              2.700E+07 2.0       5.00 
---- Radical Decomposition 
THFYL   >CH2CHO  +C2H4                        2.0E+13   0.0     164.26
----
************************************************************************
****   27.            C4H8O3 REACTIONS
************************************************************************
----
----                
----     H  OOH  H  H        
----     |   |   |  |
----   O=C---C---C--C-H  -> 1OC4HP2    
----     |   |   |  |
----     H   H   H  H
----
----
----     - R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
2OC4HP4 =4-OC4O2 +OH                          8.400E+14 0.0       180.1
2OC4HP1 =1-OC4O2 +OH                          8.400E+14 0.0       180.1
2OC4HP3 =3-OC4O2 +OH                          8.400E+14 0.0       180.1
1OC4HP4 =4-OC4O1 +OH                          8.400E+14 0.0       180.1
1OC4HP3 =3-OC4O1 +OH                          8.400E+14 0.0       180.1
1OC4HP2 =2-OC4O1 +OH                          8.400E+14 0.0       180.1
----     - INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
---- 4-OC4O2 +OH      >2OC4HP4                     1.000E+11 0.0       0.0
---- 1-OC4O2 +OH      >2OC4HP1                     1.000E+11 0.0       0.0
---- 3-OC4O2 +OH      >2OC4HP3                     1.000E+11 0.0       0.0
---- 4-OC4O1 +OH      >1OC4HP4                     1.000E+11 0.0       0.0
---- 3-OC4O1 +OH      >1OC4HP3                     1.000E+11 0.0       0.0
---- 2-OC4O1 +OH      >1OC4HP2                     1.000E+11 0.0       0.0
************************************************************************
****   28.            C4H9 REACTIONS
************************************************************************
---- 20b
---- Lenhardt, T.M.; McDade, C.E.; Bayes, K.D.
---- Rates of Reaction of Butyl Radicals with Molecular Oxygen
---- J. Chem. Phys. vol72. p.304. 1980. (298K; 0-0.01Bar).
----     - R7 ADDITION OF MOLECULAR OXYGEN -
---- 20b
S-C4H9  +O2      =S-C4H9O2                    1.000E+13 0.0       0.0
P-C4H9  +O2      =P-C4H9O2                    4.500E+12 0.0       0.0
----     - INVERSE: R7 ADDITION OF MOLECULAR OXYGEN -
---- S-C4H9O2>S-C4H9  +O2                          5.270E+10 1.92      136.0
---- P-C4H9O2>P-C4H9  +O2                          4.710E+08 2.40      131.0
----
---- RAUL= NECESITO SABER QUE HACER CON I-C4H9O2 AND T-C4H9O2
---- NIST 2000: Tsang 1990. Uncertainty=3.0
---- I-C4H9  +O2      =I-C4H9O2                    1.630E+19-2.7       0.0
---- NIST 2000: Dilger, H.; Stolmar, M.; Tregenna-Piggott, P.L.W.; Roduner, E
---- Gas phase addition kinetics of the tert-butyl radical to oxygen
---- Ber. Bunsenges. Phys. Chem. vol.101.p.956-960. 1997
---- 241-462K 1.52 Bar.
---- T-C4H9  +O2      =T-C4H9O2                    4.089E+12 0.0     2.395
---- Formation of Cyclic Ether !!!!!
---- NIST 2000 Baker, R.R.; Baldwin, R.R.; Walker, R.W. 1975
---- 753K, 0.67 Bar
S-C4H9  +O2      =OH      +2-3MOXI            1.042E+10 0.0       0.0
S-C4H9  +O2      =OH      +THF                2.601E+10 0.0       0.0
S-C4H9  +O2      =OH      +2EOXI              1.198E+09 0.0       0.0
************************************************************************
****   29.            C4H9O1 REACTIONS
************************************************************************
----     - R12 BETA SCISSSION for R-O@ -
---- 24b
---- korigi=(2.510E+14/0.0/61.1)
---- NIST 2000: Baldwin, A.C.; Barker, J.R.; Golden, D.M.; Hendry, D.G. 1977.
---- Uncertainty=3.16.
S-C4H9O >C2H5    +CH3CHO                      1.760E+14 0.0       61.1
---- NIST 2000: Batt, L. The Gas-Phase Decomposition of Alkoxy Radicals
---- Int. J. Chem. Kinet. vol.11, p.977. 1979.
----  :   7.94x1014 (s-1) e-79486
S-C4H9O =C2H5CHO +CH3                         7.940E+14 0.0      79.48
---- NIST 2000: Baldwin, A.C.; Golden, D.M. 1978.
P-C4H9O >N-C3H7  +CH2O                        3.980E+13 0.0       79.9
----     - INVERSE: R12 BETA SCISSSION for R-O@ -
C2H5    +CH3CHO  >S-C4H9O                     4.580E+32 -6.79     87.7
N-C3H7  +CH2O    >P-C4H9O                     2.070E+27 -4.81     73.2
************************************************************************
****   30.            C4H9O2 REACTIONS
************************************************************************
----
----
----     H  OOH  H  H
----     |   |   |  |
----   H-C---C---C--C-H  -> 3C4OOH2   
----     |   |   |  |
----     H   H   @  H
----
----
----     - R8 INTERNAL H ABSTRACTION -
---- 21b
S-C4H9O2>3C4OOH2                              1.390E+12 0.0      118.0 
S-C4H9O2>1C4OOH2                              2.080E+12 0.0      138.0 
S-C4H9O2>4C4OOH2                              2.600E+11 0.0      110.0  
P-C4H9O2>2C4OOH1                              1.390E+12 0.0      118.0 
P-C4H9O2>3C4OOH1                              1.730E+11 0.0       92.0  
P-C4H9O2>4C4OOH1                              3.260E+10 0.0       91.0
----     - INVERSE: R8 INTERNAL H ABSTRACTION -
3C4OOH2 >S-C4H9O2                             3.810E+09 0.00940   63.9
1C4OOH2 >S-C4H9O2                             1.060E+10-0.131     69.6
4C4OOH2 >S-C4H9O2                             1.330E+09-0.131     41.6
2C4OOH1 >P-C4H9O2                             2.990E+09 0.0447    63.9
3C4OOH1 >P-C4H9O2                             3.740E+08 0.0447    37.9
4C4OOH1 >P-C4H9O2                             1.300E+08-0.0953    22.5
----  
----
----     H  OOH  H  H
----     |   |   |  |
----   H-C---C---C--C-H  -> 3OO4OOH2   
----     |   |   |  |
----     H   H   O  H  
----             | 
----             O   
----             |    
----             @   
----   
----     - R13 ADDITION OF MOLECULAR OXYGEN -
---- 21b
4C4OOH2 +O2      =4OO4OOH2                    4.500E+12 0.0       0.0
1C4OOH2 +O2      =1OO4OOH2                    4.500E+12 0.0       0.0
3C4OOH2 +O2      =3OO4OOH2                    1.000E+13 0.0       0.0
4C4OOH1 +O2      =4OO4OOH1                    1.000E+13 0.0       0.0
3C4OOH1 +O2      =3OO4OOH1                    1.000E+13 0.0       0.0
2C4OOH1 +O2      =2OO4OOH1                    1.000E+13 0.0       0.0
----     - INVERSE: R13 ADDITION OF MOLECULAR OXYGEN -
---- 4OO4OOH2>4C4OOH2 +O2                          6.540E+16 -0.173    142.0
---- 1OO4OOH2>1C4OOH2 +O2                          6.540E+16 -0.173    143.0
---- 3OO4OOH2>3C4OOH2 +O2                          1.180E+19 -0.724    147.0
---- 4OO4OOH1>4C4OOH1 +O2                          1.010E+19 -0.701    146.0
---- 3OO4OOH1>3C4OOH1 +O2                          1.010E+19 -0.701    146.0
---- 2OO4OOH1>2C4OOH1 +O2                          1.020E+19 -0.703    146.0
----  
----     - C1 FORMATION OF O-HETEROCYKLEN -
---- 21
3C4OOH2 >2-3MOXI +OH                          1.300E+10 0.0        65.5
1C4OOH2 >2EOXI   +OH                          1.300E+10 0.0        65.5
4C4OOH2 >2MOXE   +OH                          1.300E+10 0.0        62.9
2C4OOH1 >2EOXI   +OH                          1.300E+10 0.0        65.5
3C4OOH1 >2MOXE   +OH                          1.300E+10 0.0        62.9
4C4OOH1 >THF     +OH                          1.300E+10 0.0        52.2
----     - LT6 FORMATION OF C-fuel-ALKEN -
1C4OOH2 >1-C4H8  +HO2                         1.000E+09 0.0       31.4
3C4OOH2 >2-C4H8  +HO2                         1.000E+09 0.0       31.4
2C4OOH1 >1-C4H8  +HO2                         1.000E+09 0.0       31.4
---- 
----
----     H  OOH  H  H
----     |   |   |  |
----   H-C---C---C--C-H  -> S-C4OOH   
----     |   |   |  |
----     H   H   H  H
----             
----             
----   
----     - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- 22b, nur HO2 27b
S-C4H9O2+H2O2    =S-C4OOH +HO2                4.640E+10 0.0      -10.8
S-C4H9O2+CH2O    =S-C4OOH +CHO                1.000E+12 0.0       42.0
S-C4H9O2+CH3CHO  =S-C4OOH +CH3CO              1.000E+12 0.0       42.0
S-C4H9O2+C2H5CHO =S-C4OOH +C2H5CO             1.000E+12 0.0       42.0
---- Hago lo mismo que con C3H7O2  numeral 17
S-C4H9O2+N-C3H7  =S-C4H9O +N-C3H7O            3.800E+12 0.0       -5.06
S-C4H9O2+I-C3H7  =S-C4H9O +I-C3H7O            3.800E+12 0.0       -5.06
S-C4H9O2+CH3     =S-C4H9O +CH3O               3.800E+12 0.0       -5.06
S-C4H9O2+C3H6    =S-C4OOH +C3H5               3.200E+11 0.0       62.28
S-C4H9O2+CH4     =S-C4OOH +CH3                1.140E+13 0.0       85.52
S-C4H9O2+CH3OH   =S-C4OOH +CH2OH              6.300E+12 0.0       80.92
----  
P-C4H9O2+H2O2    =P-C4OOH +HO2                4.640E+10 0.0      -10.8
P-C4H9O2+CH2O    =P-C4OOH +CHO                1.000E+12 0.0       42.0
P-C4H9O2+CH3CHO  =P-C4OOH +CH3CO              1.000E+12 0.0       42.0
P-C4H9O2+C2H5CHO =P-C4OOH +C2H5CO             1.000E+12 0.0       42.0
---- Hago lo mismo que con C3H7O2  numeral 17
P-C4H9O2+N-C3H7  =P-C4H9O +N-C3H7O            3.800E+12 0.0       -5.06
P-C4H9O2+I-C3H7  =P-C4H9O +I-C3H7O            3.800E+12 0.0       -5.06
P-C4H9O2+CH3     =P-C4H9O +CH3O               3.800E+12 0.0       -5.06
P-C4H9O2+C3H6    =P-C4OOH +C3H5               3.200E+11 0.0       62.28
P-C4H9O2+CH4     =P-C4OOH +CH3                1.140E+13 0.0       85.52
P-C4H9O2+CH3OH   =P-C4OOH +CH2OH              6.300E+12 0.0       80.92
----
----     - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- S-C4OOH +HO2     >S-C4H9O2+H2O2               2.430E+10-0.114    126.0
---- S-C4OOH +CHO     >S-C4H9O2+CH2O               2.560E+06 0.989    0.765
---- S-C4OOH +CH3CO   >S-C4H9O2+CH3CHO             1.100E+06 1.19      17.4
---- S-C4OOH +C2H5CO  >S-C4H9O2+C2H5CHO            1.350E+09 0.242     22.4
----  
---- P-C4OOH +HO2     >P-C4H9O2+H2O2               2.050E+10-0.0893   126.0
---- P-C4OOH +CHO     >P-C4H9O2+CH2O               2.170E+06 1.01     0.688
---- P-C4OOH +CH3CO   >P-C4H9O2+CH3CHO             9.260E+05 1.22      17.3
---- P-C4OOH +C2H5CO  >P-C4H9O2+C2H5CHO            1.140E+09 0.267     22.3
----  
----
----
----     - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- 25b
S-C4H9O2+C4H10   >S-C4OOH +P-C4H9             1.680E+13 0.0       85.5
S-C4H9O2+C4H10   >S-C4OOH +S-C4H9             1.120E+13 0.0       74.0
P-C4H9O2+C4H10   >P-C4OOH +P-C4H9             1.680E+13 0.0       85.5
P-C4H9O2+C4H10   >P-C4OOH +S-C4H9             1.120E+13 0.0       74.0
----     - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
S-C4OOH +P-C4H9  >S-C4H9O2+C4H10              1.330E-12 6.74     -18.0
S-C4OOH +S-C4H9  >S-C4H9O2+C4H10              5.260E-13 6.87     -15.1
P-C4OOH +P-C4H9  >P-C4H9O2+C4H10              1.130E-12 6.76     -18.1
P-C4OOH +S-C4H9  >P-C4H9O2+C4H10              4.450E-13 6.89     -15.2
----  
************************************************************************
****   31.            C4H9O4 REACTIONS
************************************************************************
****
**** Raul ensayo C2
----     - R14 INTERNAL H ABSTRACTION -
4OO4OOH2=2-4C4HP                              1.000E+11 0.0       33.9
1OO4OOH2=2-1C4HP                              1.000E+11 0.0       56.43
3OO4OOH2=2-3C4HP                              1.000E+11 0.0       56.43
4OO4OOH1=1-4C4HP                              2.000E+11 0.0       50.16
3OO4OOH1=1-3C4HP                              2.000E+11 0.0       46.398
2OO4OOH1=1-2C4HP                              2.000E+11 0.0       71.06
----  
----     - INVERSE: R14 INTERNAL H ABSTRACTION -
---- 2-4C4HP >4OO4OOH2                             1.000E+11 0.0       26.8
---- 2-1C4HP >1OO4OOH2                             1.000E+11 0.0       43.4
---- 2-3C4HP >3OO4OOH2                             1.000E+11 0.0       43.4
---- 1-4C4HP >4OO4OOH1                             2.000E+11 0.0       31.4
---- 1-3C4HP >3OO4OOH1                             2.000E+11 0.0       27.6
---- 1-2C4HP >2OO4OOH1                             2.000E+11 0.0       52.3
----   
----     - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS -
2-4C4HP =2OC4HP4 +OH                          1.000E+09 0.0       31.4
2-1C4HP =2OC4HP1 +OH                          1.000E+09 0.0       31.4
2-3C4HP =2OC4HP3 +OH                          1.000E+09 0.0       31.4
1-4C4HP =1OC4HP4 +OH                          1.000E+09 0.0       31.4
1-3C4HP =1OC4HP3 +OH                          1.000E+09 0.0       31.4
1-2C4HP =1OC4HP2 +OH                          1.000E+09 0.0       31.4
----
----     - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS -
---- 2-4C4HP >2OC4HP4 +OH                          1.000E+09 0.0       31.4
---- 2-1C4HP >2OC4HP1 +OH                          1.000E+09 0.0       31.4
---- 2-3C4HP >2OC4HP3 +OH                          1.000E+09 0.0       31.4
---- 1-4C4HP >1OC4HP4 +OH                          1.000E+09 0.0       31.4
---- 1-3C4HP >1OC4HP3 +OH                          1.000E+09 0.0       31.4
---- 1-2C4HP >1OC4HP2 +OH                          1.000E+09 0.0       31.4
---- 
************************************************************************
****   32.            C4H10O2 REACTIONS
************************************************************************
---- 
----     - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- 25b
I-C3H7O2+C4H10   >IC3H7OOH+P-C4H9             1.680E+13 0.0        85.5
I-C3H7O2+C4H10   >IC3H7OOH+S-C4H9             1.120E+13 0.0        74.0
N-C3H7O2+C4H10   >NC3H7OOH+P-C4H9             1.680E+13 0.0        85.5
N-C3H7O2+C4H10   >NC3H7OOH+S-C4H9             1.120E+13 0.0        74.0
----     - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
IC3H7OOH+P-C4H9  >I-C3H7O2+C4H10              1.400E-12 6.73      -18.0
IC3H7OOH+S-C4H9  >I-C3H7O2+C4H10              5.540E-13 6.86      -15.1
NC3H7OOH+P-C4H9  >N-C3H7O2+C4H10              1.130E-12 6.76      -18.1
NC3H7OOH+S-C4H9  >N-C3H7O2+C4H10              4.440E-13 6.89      -15.2
---- 
************************************************************************
****   33.            C4H10O2 REACTIONS
************************************************************************
----     - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- 23b
S-C4OOH >S-C4H9O +OH                          7.000E+15 0.0       174.0
P-C4OOH >P-C4H9O +OH                          1.100E+16 0.0       182.0
----     - INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
S-C4H9O +OH      >S-C4OOH                     1.160E+10  1.37    -15.30
P-C4H9O +OH      >P-C4OOH                     6.790E+18 -1.41      7.41
----     - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- Konnov 1999:
---- kcin1= (4.000E+15/0/179.7)
---- kcin1= (4.000E+15/0/179.7)
----
---- Kirk, A.D.; Knox, J.H.
---- The pyrolysis of alkyl hydroperoxides in the gas phase
---- Trans. Faraday Soc. vol. 56; p.1296-1303. 1960 Experimental
---- 553 - 653 K. Uncertainty=2.0.
---- kcin=(1.580E+15/0/167.121)
----
---- Sahetchian, K.A.; Rigny, R.; Tardieu de Maleissye, J.; Batt, L.; Anwar Khan, M.; Mathews, S.
---- The pyrolysis of organic hydroperoxides (ROOH). Symp. Int. Combust. Proc
---- vol.24. p.637 - 643; 1992
---- 443-473K; 1.01Bar. Uncertainty=3.2
---- kcin=(5.010E+15/0/177.93)
----
************************************************************************
----
----
----  
---- Literaturreferenzen
---- 90DAG/LIU 
---- 88HER      
---- 88WAL/DAG2
---- 86ATK2     
---- 86LIF/BID  
---- 80DUK/HOL 
---- 75FLO/PEN
---- 14: Cox, R.A., IEA Combustion Research Conference, Harwell Laboratory,
----     1986, AERE-R12102. 
---- 15: Benson, S.W., Oxidation Communications 2-3, 4:169-188 (1982). 
---- 17: Gibson, C., Gray, P., Griffiths, J.F., and Hasko, S.M., Twentieth
----     Symposium (International) on Combustion, The Combustion Institute,
----     Pittsburgh, 1984, pp. 101-109. 
---- 20: Lenhardt, T.M., McDade, C.E., and Bayes, K.D., J. Chem. Phys.
----     72-1:304-310 (1980).
---- 21: Kojima, S., R&D Review of Toyota CRDL 28(4): 25-36 (1993).
---- 22: Values for reaction HO2 + CH2O > CHO + H2O2 were assigned. 
---- 23: Sahetchian, K.A., Rigny, H.R., and Ben-Aim, R.I., Int. J. Chem. Kinet.
----     14:1325-1337(19982). Values for the decomposition of n-C7H15OOH or
----     s-C7H15OOH were assigned according to primary or secondary of the OOH
----     site, respectively. 
---- 24: Baldwin, A.C., Barker, J.R., Golden, D.M., and Hendry, D.G., J. Phys.
----     Chem. 81: 2483-2492 (1977).
---- 25: Values for reaction HO2 + C4H10 > N-C4H9 +H2O2 or HO2 + C4H10 > S-C4H9
----     + +H2O2 were assigned according to the product N-C4H9 or S-C4H9,
----     respectively.
---- 26: wie 22
---- 27: Values for reaction HO2 + CH3O2 > H2O2 + CH3O2H were assigned. 
---- 28: Plumb, I.C., and Ryan, K.R., Int. J. Chem. Kinet. 13:1011-1028 (1981).
---- 29: Ruiz, R.P., and Bayes, K.D., J. Phys. Chem. 88: 2592-2595 (1984).
---- 30: Jayaswal, B.K., Ind. J. Technol. 22: 306-311 (1984).
---- 31: Ernst, J., Ber. Bunsenges. Phys. Chem. 80: 645-650 (1976).
---- 32: Clarke, M.J., and Holbrook, K.A., J. Chem. Soc. Farad. Trans. 1 73:
----     890-895 (1977).
---- 33: Hammonds, P., and Holbrook, K.A., J. Chem. Soc. Farad. Trans. 1 78:
----     2195-2203 (1982).
---- 36: Values given in the reference of source 12 for O2 + CH3CHO > HO2 +
----     CH3CO were assigned.
---- 37: Kaiser, E.W., Int. J. Chem. Kinet. 15: 997-1012 (1983).
---- 38: Watkins, K.W., and Word, W.W., Int. J. Chem. Kinet. 17: 455-501 (1985).
---- 39: Zabarnick, S., and Heicklen, J., Int. J. Chem. Kinet. 17: 455-501
----     (1985).
---- 70: Values for reaction CH3 + CH3O2 > 2 CH3O were assigned.
END
000  COMPLEX REACTIONS
END

Download