Total and partial oxidation of C1-4 alkanes in the high and medium temperature range
C2H4C2H2CH4
Evaluated by comparison experiments and simulation related to ignition delay times, flame velocities, and concentration profiles of species for a wide range of conditions.
R. Quiceno, O. Deutschmann, J. Warnatz, European Combustion Meeting 2005. Louvain-la-Neuve, 3-6 April 2005, Belgian Section of the Combustion Institute paper, Chemical kinetics section, paper 29
Files
MECHANISM C1-4 Gas phase chemistry, Combustion, Partial oxidation
***********************************************************************
**** *
**** Gas phase reaction mechanism for combutsion and *
**** partial oxidation of C1-C4 alkanes *
**** *
**** *
**** Version 1.0 December 2003 *
**** *
**** Raul Quiceno, J�rgen Warnatz, Olaf Deutschmann *
**** IWR, Heidelberg University, Germany *
**** Contact: [email protected] (O. Deutschmann) *
**** *
**** References: *
**** R. Quiceno, PhD thesis, University of Heidelberg *
**** R. Quiceno, O. Deutschmann, J. Warnatz, *
**** European Combustion Meeting 2005. Louvain-la-Neuve, *
**** 3-6 April 2005, Belgian Section of the Combustion *
**** Institute paper, Chemical kinetics section, paper 29 *
**** www.detchem.com/mechanisms *
**** *
**** *
**** Kinetic data format: DETCHEM *
**** k = A * T**b * exp (-Ea/RT) A b Ea *
**** (cm,mol,s) - kJ/mol *
**** *
**** + some reactions in TROE nomenclature *
**** *
**** see manuals on www.detchem.com for details *
**** *
**** The kinetic data of the backward reactions of *
**** reactions are calculated *
**** from thermodynamics (k_b = k_f /K) *
**** *
**** *
**** DETCHEM format *
**** *
***********************************************************************
*********************************************************************
****Low Temperature Mechanism:
****Low temperature mechanism C1-C4 generiert von M.Nehse fuer O.Deutschmann.
****Generierten Spezies. Source: Minetti1995
****Neccessary for low temperature mechanisms of higher HC complete low T mech of higher HC = C1-C4 high temp base
****mechanism + Low temperature mechanism C1-C4 (mc4low)+ automatic generated low temp mech for higher HC.
****THESE 3 PARTS MUST BE CONCATENATED for a COMPLETE LOW TEMP MECHANISM !!!
****Oxygenates comes from second addition, and isomerization reactions
****
****High temperature Mechanism:
****VK Updated version of the C4-mechanism of Ch. Chevalier (1993).
****VK Checked with respect to free flame velocities, ignition delay times and
****VK profiles of concentrations of burner stabilized flames of various fuels.
**** COMMENTS IN THE MECHANISM ALWAYS REFER TO THE NEXT FOLLOWING REACT.
**** WITH C2H2 + O2 ---> HCCO + OH MILLER 82
**** WITH C2H3 + H ---> C2H2 + H2 DLOG K = + 0.0
**** WITH C2H3 + OH ---> C2H2 + H2O 100% ESTIMATED!!!
**** DECOMP C2H3 FROM K0/KINF CEE /3
**** WITH C2H2 + C2H ---> C4H2
**** WITH C2H2 + H ---> C2H + H2 WA 1984
**** WITH CH2 + CH2 ---> C2H2+ H2 MILLER 1982
**** WITH CH2 + HCCO ---> C2H3+ CO MILLER 1982
**** CONSUMPTION OF CH3CHO CORRECTED
**** VALUES C3 FROM WESTBROOK - DRYER 1984
**** DECOMP. CH3CHO WITH M* (LOW P, BIMOLEC. REACTION)
**** CH3CHO + OH ---> CH3CO + H2O WITH NEGATIVE ACT ENERGY (COR.)
**** CO + OH --> CO2 + H 6.0 E 06...
**** CH3 + OH --> CH3O + H VALUE SLOANE 1989: 4.52E+14/0/64.8
**** AND VALUE REVERSE REACTION SLOANE 1989: 4.75E+16/-0.13/88
**** 1CH2 + O2 --> ONLY CO + H + OH
**** 1CH2 + H2 --> CH3 +H WITH REVERSE REACTION
**** CH2OH + M --> CH2O + H + M : 5 EXP13...
**** CH3O + M --> CH2O + H + M : VALUE OF DECOMP. OF CH2OH
**** CH3OH --> 100% CH2OH
****VK CH3 + OH --> 1CH2 + OH value of Dobe, Berces, Marta:
****VK 26th Symp.(Int.) Comb. Institute (1996) work in progress poster
****VK CH3 + M --> CH + H2 + M Markus(1992) added
****VK 1CH2 + CH3 --> C2H4 + H Markus(1992) added
****VK C2H2 + O --> 1) 3CH2 + CO CEC94 2.168E+06/2.1/6.57
****VK --> 2) HCCO + H CEC94 5.059E+06/2.1/6.57
****VK ( branching ratio 1) / 2) = 0.3 / 0.7) recommended by CEC1994
****VK C2H3 + O2 ---> Prod. overall rate CEC1994 with 2 reaction pathways:
****VK C2H3 + O2 ---> CH2O + CHO
****VK C2H3 + O2 ---> CH2CHO + O
****VK C formation reactions added:
****VK CH + H --> C + H2 Thorne (1986)
****VK C + O2 --> CO + O Thorne (1986)
----
---- PART ONE: MECHANISM HIGT TEMPERATURE
******************************************
**** 01. H2-O2 React. (no HO2, H2O2)
******************************************
---- (OLD: OK CEC 91 O2+H=OH+O /2.000E+14/0.0/70.300)
---- CEC 94, (9.756E+13/0/62.10) (300-5000 K, dlog k= +-0.1 rising to +-0.5)
---- k_r, CEC 94, k=(1.2E+13/0/-0.931), (220-500K, dlog k= +-0.2)
---- k=(1.445+13/0/2.935), (1000-2000K, dlog k= +-0.1)
O2 +H =OH +O 9.756E+13 0.0 62.100
---- O2 +H =OH +O 2.000E+14 0.0 70.300
---- Baulch,D.L.; Cobos,C.J.; Cox,R.A.; Esser,C.; Frank,P.; Just,Th.; Kerr,J.A.; Pilling,M.J.; Troe,J.; Walker, R.W.; Warnatz,J
---- 1992. Uncertainty=1.26
---- OH +O =O2 +H 1.445E+13 0.0 2.935
----
---- Yuan, T.; Wang, C.; Yu, C.-L.; Frenklach, M. Determination of the rate coefficient for the reaction H+O2->OH+O by a
---- shock tube/laser absorption/detailed modeling study.J. Phys. Chem. vol.95. p.1258. 1991. (1050-2700K)(1.39-2.73Bar)
---- Uncertainly=1.12, Measure!!!kcin=(1.614E+17/-0.93/70.590)
---- O2 +H =OH +O 1.807E+17 -0.93 70.590
----
---- Germann, T.C.; Miller, W.H. Quantum mechanical pressure-dependent reaction and recombination rates for O+OH->H+O2,HO2
---- J. Phys. Chem. A vol.101. p.6358-6367. 1997. (500-2000K) Demasiado rapida para ignition.
---- OH +O =O2 +H 5.119E+11 0.39 2.809
----
---- Klimo, V.; Bittererova, M.; Biskupic, S.; Urban, J.; Micov, M. Temperature dependences in the O+OH->O2+H reaction.
---- Quasiclassical trajectory calculation. Collect. Czech. Chem. Commun. vol58. p234-243. 1993.
---- OH +O =O2 +H 9.069E+14-0.58 2.153
----
---- 2003
---- kcin=(5.2038E+15/-0.458/70.08)
---- (+,-) 0.1 = (1.26)
---- O2 +H =OH +O 4.204E+15 -0.458 70.080
----
---- CEC 94 (5.120E+04/2.67/26.27) (300-2500 K,dlogk = +-0.5 rising to +-0.2)
H2 +O =OH +H 5.060E+04 2.670 26.300
----
---- 2003 = CEC 94
---- CEC 94 (1.000E+08/1.6/13.80) (300-2500 K,dlogk = +-0.1 rising to +-0.3)
---- k_r, CEC 94, k=(4.517+08/1.6/77.071), (300-2500, dlog k= +-0.2)
H2 +OH =H2O +H 1.000E+08 1.600 13.800
----
---- Oldenborg, R.C.; Loge, G.W.; Harradine, D.M.; Winn, K.R. Kinetic study of the OH + H2 reaction from 800 to 1550 K
---- J. Phys. Chem. vol96. p8426-8430. 1992. (250-2580K) (0.27Bar)
---- kcin=(2.168E+08/1.52/14.467)
---- +,- 0.1 at 250K
---- +,- 0.3 at 2500K
---- H2 +OH =H2O +H 2.168E+08 1.520 14.467
----
---- CEC 94 (1.506E+09/1.14/0.416) (250-2500 K, dlogk = +-0.2)
OH +OH =H2O +O 1.500E+09 1.140 0.420
---- Sutherland, J.W.; Patterson, P.M.; Klemm, R.B. Rate constants for the reaction, O(3P)+H2O=OH+OH, over the temperature range
---- 1053K to 2033K using two direct techniques. Symp. Int. Combust. Proc. vol23. p51-57 1991. (1290-2030K) Medido. Uncertainty=1.16
---- H2O +O =OH +OH 5.553E+13 0.0 79.90
----
******************************************
**** 02. Recombination Reactions
******************************************
---- OK CEC 91 (GIVEN HERE FOR H2)
H +H +M(1) =H2 +M(1) 1.800E+18 -1.000 0.000
---- OK ULI 88, WA 84, NO RECOM. CEC.
O +O +M(1) =O2 +M(1) 2.900E+17 -1.000 0.0
---- OK CEC 94 (GIVEN FOR H2),MEASURED FOR H2O, AR, N2,(300-3000 K, dlogk=+-0.5)
---- (MEASURED FOR H2O, GIVEN HERE FOR H2) (2.176E+22/-2.0/0.0)
---- (MEASURED FOR AR, GIVEN HERE FOR H2) (2.383E+22/-2.0/0.0)
---- (MEASURED FOR N2, GIVEN HERE FOR H2) (5.531E+22/-2.0/0.0)
H +OH +M(2) =H2O +M(2) 5.530E+22 -2.000 0.000
******************************************
**** 03. HO2 Formation/Consumption
******************************************
---- CEC 94 k=(2.103E+18/-0.8/0), (MEASURED FOR H2), (300-2000K, dlogk = +-0.5)
---- ALSO MEASURED FOR AR AND N2, (300-2000K, dlogk = +-0.5)
---- (MEASURED FOR AR, GIVEN HERE FOR H2) (1.761E+18/-0.8/0.0)
---- (MEASURED FOR N2, GIVEN HERE FOR H2) (3.536E+18/-0.8/0.0)
H +O2 +M(3) =HO2 +M(3) 2.100E+18 -0.800 0.0
---- CEC 94 (1.690E+14/0/3.66), (300-1000 K, dlogk = +-0.3)
HO2 +H =OH +OH 1.500E+14 0.0 3.800
---- CEC 94 (4.280E+13/0/5.90), (300-1000 K, dlogk = +-0.3)
HO2 +H =H2 +O2 3.000E+13 0.0 4.000
---- OK CEC 94 (3.011E+13/0/7.20), (300-1000 K, dlog k = +-0.3)
HO2 +H =H2O +O 3.000E+13 0.0 7.200
---- CEC 94 (3.19E+13/0/0), (300-1000 K, dlogk = +-0.3 rising to +-0.5)
HO2 +O =OH +O2 2.000E+13 0.0 0.0
---- CEC 94, k=(2.89E+13/0/-2.08), (300-2000K, dlogk = +-0.2 rising to +-0.5)
HO2 +OH =H2O +O2 6.000E+13 0.0 0.0
---- HO2 +OH =H2O +O2 2.890E+13 0.0 -2.08
******************************************
**** 04. H2O2 Formation/Consumption
******************************************
---- CEC 94 (4.22E+14/0/50.14) (850-1250 K) OR
---- CEC 94 (4.22E+14/0/50.14+1.32E+11/0/-6.82) (550-1250 K, +-0.15 to +-0.4)
HO2 +HO2 =H2O2 +O2 4.220E+14 0.0 50.140
**** BEGIN DUPLICATE REACTION
HO2 +HO2 =H2O2 +O2 1.320E+11 0.0 -6.820
**** END DUPLICATE REACTION
---- CEC 94, k_inf=(7.23E13/-0.37/0.00), (200-1500K, dlog k=+-0.5)
---- k_0(N2)=(5.53E19/-0.76/0.00), (250-1400K, dlog k=+-0.4)
---- Fcent(N2)=(0.50) , (200-1500K, dFc = +- 0.2)
OH +OH +M(1) =H2O2 +M(1) 7.230E+13 -0.370 0.0
LOW 5.530E+19 -0.760 0.0
TROE 0.500 0.0 0.0 0.0
---- OK CEC 94 (1.686E+12/0/15.71), (300-1000 K, dlogk = +-0.3)
H2O2 +H =H2 +HO2 1.700E+12 0.0 15.700
---- OK CEC 94 (1.024E+13/0/14.97) (300-1000 K , dlogk = +-0.3)
H2O2 +H =H2O +OH 1.000E+13 0.0 15.000
---- CEC 94 (6.62E+11/0/16.63) (300-500 K, +-0.3)
---- 86 TSA/HAM (9.63E+06/2.0/16.629) (300-2500 K)
H2O2 +O =OH +HO2 9.630E+06 2.0 16.630
---- CEC 94 k=(7.82E+12/0/5.57), (300-1000 K, dlogk = +-0.2 rising to +-0.5)
H2O2 +OH =H2O +HO2 5.400E+12 0.0 4.200
******************************************
**** 05. CO REACTIONS
******************************************
---- GRI 2.11, k=(4.76E+07/1.23/0.29)
---- 76 BAU/DRY, k=(1.51E+07/1.3/-3.2), (250-2000K, dlog k = +-0.5)
---- 94 BAU/COB, k=(6.32E+06/1.5/-2.08), (300-2000K, dlog k = +-0.2 at 300K r.to +-0.5)
---- attention 94 BAU/COB evaluation is based on wrong flame velocity measurements
---- RAUL:SHINJI KOJIMA,CANDF:99:87-136,1994 k=(4.400E+06 1.500 -3.100) 4
---- RAUL:RAVISHANKARA 1983 [250K - 1040K] k=(5.480E+10 0.295 68.150)
---- 76 BAU/DRY are in better agreement to direct kinetic measurements
CO +OH =CO2 +H 4.760E+07 1.230 0.290
---- 86 TSA/HAM (1.50E+14/0/98.94), (300-2500K)
CO +HO2 =CO2 +OH 1.500E+14 0.0 98.700
----
---- Volman, D.H Photochemistry of the gaseous hydrogen peroxide-carbonmonoxide system. IV. Survey of the
---- rate constant and reaction profile for the HO2 + CO ?rarrow? CO2 + OH reaction. Journal:Photochem. Photobiol
---- p.1.00-3.00. vol100 1996.(250-800K)
---- CO +HO2 =CO2 +OH 2.079E+14 0.5 95.61
----
---- Vardanyan, I.A.; Sachyan, G.A.; Nalbandyan, A.B.The Rate Constant of the Reaction HO2 + CO = CO2 + OH
---- Int. J. Chem. Kinet. vol.7. p.23.00. 1975. Exp. (878-952K)(1.01Bar). (+/-) 2.999E+13 cm3/mol/s (+/-) 12.47 kJ/mol
---- CO +HO2 =CO2 +OH 1.017E+14 0.0 96.44
----
---- RAUL: SYMP NO REC CEC K=( 7.100E+13 0.0 -19.000)
---- 86 TSA/HAM, k(N2)=(6.170E+14/0/12.56), here given for H2
CO +O +M(1) =CO2 +M(1) 1.540E+15 0.0 12.560
---- M( 5)
---- Third-body efficiencies: [2]
---- N2 1.0
---- H2 Enhanced by 2.0
---- O2 Enhanced by 6.0
---- H2O Enhanced by 6.0
---- CH4 Enhanced by 2.0
---- CO Enhanced by 1.5
---- CO2 Enhanced by 3.5
---- C2H6 Enhanced by 3.0
---- AR Enhanced by 0.5
---- Pressure dependence was added in GRI-Mech 3.0, using k(inf) from J. Troe, 15th Symp. (Int'l.) on Combustion, 9.667 (1974)
---- Warnatz, J. Rate coefficients in the C/H/O system. Combustion chemistry (ed. W.C.Gardiner,Jr.) Springer-Verlag, NY 1984, p.197.
----
---- k_o = 6.02E+14 exp(-3000 cal/mol /RT) cm^6/mol^2 s
----
---- k_inf = 1.80E+10 exp(-2385 cal/mol /RT) cm^3/mol s
----
---- 86 TSA/HAM (2.53E+12/0/199.54) (300-2500 K, delta = +-2)
CO +O2 =CO2 +O 2.500E+12 0.0 200.000
---- RAUL: SE ADICIONA:(SHINJI KOJIMA,CANDF:99:87-136,1994)
CO +CH3O =CO2 +CH3 1.580E+13 0.0 49.400
******************************************
----
----
----
******************************************
**** 10. CH Reactions
******************************************
---- OK CEC 94, k=(3.98E=13/0/0), (300-2000K ,dlog k = +-0.5)
CH +O =CO +H 4.000E+13 0.0 0.0
---- CEC 94, k=(3.312E+13/0/0), (300-2000K, dlog k= +-0.3 r. to +-0.5 at 2000K)
---- products:(CHO+O),(CO+OH),no branching ratio
CH +O2 =CHO +O 3.000E+13 0.0 0.0
---- CEC 94, k=(3.43E+12/0/2.87), (300-1000K, dlog k = +-0.1)
CH +CO2 =CHO +CO 3.400E+12 0.0 2.900
---- CEC 94, k=5.721E+12/0/-3.16), (300-1000K, dlog k = +-0.1)
CH +H2O =CH2O +H 4.560E+12 0.0 -3.200
CH +H2O =3CH2 +OH 1.140E+12 0.0 -3.200
---- Miller,Bowman Prog. Energy Combust.Sci. 15,287, (1989)
CH +OH =CHO +H 3.000E+13 0.0 0.0
******************************************
**** 11. CHO REACTIONS
******************************************
---- OK WA 84 NO REC CEC k=(7.100E+14 0.0 70.300)
---- CEC 94, k=(4.474E14/0/65.93) meas. AR, here given for H2,
---- k_r=(5.492E+14/0/3.076) meas. AR, here given for H2
---- for k (600-2500K, dlogk = +-0.5); for k_r (300-2500K, dlogk = +-0.5)
CHO +M(1) =CO +H +M(1) 4.500E+14 0.0 66.000
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO +H =CO +H2 9.000E+13 0.0 0.0
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO +O =CO +OH 3.000E+13 0.0 0.0
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO +O =CO2 +H 3.000E+13 0.0 0.0
---- OK CEC 94 (300-2500 K, dlogk = +-0.3)
CHO +OH =CO +H2O 1.000E+14 0.0 0.0
---- OK CEC 94 k_sum=(3.011E+12/0/0) (300-2500 K, dlogk=+-0.3),
---- (CO+HO2),(OH+CO2),(HCO3); (CO+HO2) main channel, (HCO3) not relevant
---- Total:CHO+O2 = CO+HO2 3.000E+12/0.0/0.0)
CHO +O2 =CO +HO2 2.400E+12 0.0 0.0
----
---- Hsu 1996 kcin=(1.548E+04/2.38/6.386)
---- Timonen kcin=(7.588E+12/0.0/3.119)
---- Kinetics of the reactions of the formyl radical with oxygen, nitrogen dioxide, chlorine, and
---- bromine. J. Phys. Chem. vol.92. p.651. 1988.(295-713K) 0Bar.Experimental!!!
---- CHO +O2 =CO +HO2 7.588E+12 0.0 3.119
----
---- Vandooren, J.; Oldenhove de Guertechin, L.; van Tiggelen, P.J. Kinetics in a lean formaldehyde flame
---- Combust. Flame.. vol64. p.127. 1986. (300-1600K) (0.03Bar)
---- CHO +O2 =CO +HO2 2.697E+13 0.0 4.989
----
---- Veyret, B.; Lesclaux, R. Absolute Rate Constants for the Reactions of HCO with O2 and NO from 298 to 503
---- J. Phys. Chem. vol85.p.1918. 1981. (298-503K) (0.06-0.67Bar). n=(-0.1 hasta -0.7)
---- kcin= (3.390E+12/(T/298)^n/0.0)
---- n= -0.1:
---- CHO +O2 =CO2 +OH 5.993E+12 -0.1 0.0
---- n= -0.7:
---- CHO +O2 =CO2 +OH 1.828E+14 -0.7 0.0
----
---- NIST 2000 Nadtochenko S.A. Sarkisov. O.M. Vedenee O.V
---- Study of the reaction of CHO with Molecular Oxygen. Doklur Phy Chem (Engl. Transl)
---- vol.244 p.152 1979 (Relative rate measure (19% of: CHO+O2 = CO+HO2)
CHO +O2 =CO2 +OH 0.600E+12 0.0 0.0
----
---- OK CEC 94 (300 K, dlogk = +-0.3)
CHO +CHO =CH2O +CO 3.000E+13 0.0 0.0
---- Tsang 1986
CHO +HO2 =OH +CO2 +H 3.000E+13 0.0 0.0
******************************************
**** 12. CH2 Reactions
******************************************
---- CEC 94, k=(6.022E+12/0/-7.48), (300-3000K, dlog k = +-0.7)
3CH2 +H =CH +H2 6.000E+12 0.0 -7.500
---- OK CEC 89 k=(8.400E+12 0.0 0.0)
---- CEC 94, k=(1.204E+14/0/0),(300-2500K, dlog k=+-0.2 rising to +-0.7 at 2500K)
---- Products: (CO+H+H), (CO+H2); k1/k=0.6+-0.3 over whole range
3CH2 +O >CO +H +H 7.600E+13 0.0 0.0
3CH2 +O =CO +H2 4.400E+13 0.0 0.0
---- CEC 94, k=(1.204E+14/0/3.326),(300-3000K, dlog k = +-0.5)
---- products: (C2H2+H+H),(C2H2+H2), k2/k=0.9 =-0.1 over range 300-3000K
3CH2 +3CH2 =C2H2 +H2 1.200E+13 0.0 3.4
3CH2 +3CH2 =C2H2 +H +H 1.100E+14 0.0 3.4
---- CEC 94, k=(4.215E+13/0/0), (300-3000K, dlog k=+-0.3 r. to +-0.5 at 3000K)
3CH2 +CH3 =C2H4 +H 4.200E+13 0.0 0.0
---- 2 NEXT REACT.: OK CEC 89. THESE ARE THE 2 FASTEST REACTIONS.
---- CEC 94, k=(2.469E+13/0/6.236),(300-1000K,dlog k= +-0.1 r. to +-0.5 at 1000K)
---- O2+CH2=>
---- CO2+H2 From Konnov: 6.900E+11 / 0.0 / 2.09
---- CO2+H+H From Konnov: 1.600E+12 / 0.0 / 4.18
---- CO+OH+H From Konnov: 8.600E+10 / 0.0 / 4.18
---- CO+H2O From Konnov: 1.900E+10 / 0.0 / -4.18
---- CH2O+O From Konnov: 5.000E+13 / 0.0 / 37.62
----
---- CO+OH+H From GRI: 5.000E+12 / 0.0 / 6.27
---- CO2+H+H From GRI: 5.800E+12 / 0.0 / 6.27
---- CH2O+O From GRI: 2.400E+12 / 0.0 / 6.27
----
3CH2 +O2 =CO +OH +H 5.000E+12 0.0 6.270
3CH2 +O2 =CO2 +H2 5.800E+12 0.0 6.270
3CH2 +O2 =CH2O +O 2.400E+12 0.0 6.270
----
---- 3CH2 +O2 =CO +OH +H 8.600E+10 0.0 4.180
---- 3CH2 +O2 =CO2 +H2 6.900E+11 0.0 2.090
---- 3CH2 +O2 =CH2O +O 5.000E+13 0.0 37.62
---- 3CH2 +O2 =CO2 +H +H 1.600E+12 0.0 4.180
---- 3CH2 +O2 =CO +H2O 1.900E+10 0.0 -4.180
----
----(*) 3CH2 +O2 =CO +OH +H 1.300E+13 0.0 6.200
----(*) 3CH2 +O2 =CO2 +H2 1.200E+13 0.0 6.200
----
---- CEC 94, scaled AR: k=(1.050E+13/0/0),(300-2000K, dlog k = +-0.3)
---- CEC 94, scaled N2: k=(1.510E+13/0/0),(300-2000K, dlog k = +-0.3)
---- only for H2, O2, H2O, CO, CO2, (N2 or AR)
1CH2 +M(1) =3CH2 +M(1) 1.200E+13 0.0 0.0
---- CEC 94, k=(3.132E+13/0/0), (300-1000K, dlog k= +-0.3 r. to +-0.5 at 1000K)
---- procuts: ONLY THIS CHANNEL
1CH2 +O2 =CO +OH +H 3.100E+13 0.0 0.0
---- OK CEC. WITH REVERSE REACTION THOUGH THE REV. ONE IS SO COMPETITIV
---- CEC 94, k_r=(6.02E+13/0/63.19), (300-2500K, dlog k= +-1.0)
CH3 +H =1CH2 +H2 6.000E+13 0.0 63.2
----
******************************************
**** 13. CH2O Reactions
******************************************
---- OK CEC 89 k=( 5.000E+16 0.0 320.000)
---- CEC 94, k=k1+k2=(4.646E+36/-5.54/404.58), (1700-3200, dlog k = +-0.3)
---- products: (CHO+H+M),(CO+H2+M), k2/k= 0.7 +-0.4, 2000-3000K
CH2O +M(1) =CHO +H +M(1) 1.400E+36 -5.54 404.580
CH2O +M(1) =H2 +CO +M(1) 3.250E+36 -5.54 404.580
----
----
---- FROM GRI 3.0
----(*)H +CHO +M( 6) =CH2O +M( 6) 1.090E+12 0.48 1.770
---- LOW 2.470E+24 -2.57 1.080
---- TROE 0.782 271.0 2755.0 6570.0
----
---- k_o = 2.47E+24 T^(-2.57) exp(-425 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 1.09E+12 T^0.48 exp(260 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.782) exp(-T/271) + 0.782 exp(-T/2755) + exp(-6570/T)
----
----(*)CO +H2 +M( 6) =CH2O +M( 6) 4.300E+07 1.5 332.728
---- LOW 5.070E+27 -3.42 352.580
---- TROE 0.932 197.0 1540.0 10300.0
----
---- k_o = 5.07E+27 T^(-3.42) exp(-84350 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 4.30E+07 T^1.5 exp(-79600 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.932) exp(-T/197) + 0.932 exp(-T/1540) + exp(-10300/T)
-----
---- OK CEC 91 k=(2.300E+10 1.05 13.700)
---- CEC 94 (1.265E+08/1.62/9.062) (300-1700 K, dlogk = +-0.1 rising to +-0.3)
CH2O +H =CHO +H2 1.270E+08 1.62 9.000
---- OK CEC 94 (250- 2000K, dlogk = +-0.1 rising to +-0.3)
CH2O +O =CHO +OH 4.150E+11 0.57 11.600
---- OK CEC 94 (3.43E+09/1.18/-1.87) (300-3000 K,dlogk = +-0.1 rising to +-0.7)
CH2O +OH =CHO +H2O 3.400E+09 1.18 -1.870
---- OK CEC 94 (600-1000 K, dlogk = +-0.5)
CH2O +HO2 =CHO +H2O2 3.000E+12 0.0 54.7
---- OK WA 84 k=(1.000E+11 0.0 25.500)
---- CEC 89: 1.8 E12/0/30.0. NOT IMPORTAN
---- CEC 91: 4.1 E12/0/37.0
---- CEC 94: k=(7.83E-08/6.1/8.23), (300-2000K, dlog k = +-0.2)
CH2O +CH3 =CHO +CH4 7.830E-08 6.1 8.200
---- OK CEC 94 k=(6.020E+13/0/170.10), (700-1000 K, dlog k = +-0.5)
CH2O +O2 =CHO +HO2 6.000E+13 0.0 170.700
******************************************
**** 14. CH3 REACTIONS
******************************************
---- CEC 94, k=(1.0E+16/0/379.1), (1500-3000K, dlog k = +-0.5)
CH3 +M(1) =3CH2 +H +M(1) 1.000E+16 0.0 379.000
---- M. W. Markus, D. Woiki, P. Roth, Symp. (Int.) on Comb., 24, 581, (1992)
CH3 +M(1) =CH +H2 +M(1) 6.900E+14 0.0 345.03
---- CEC 94, k=(4.22E13/0.00/0.00), (300-3000K, dlog k + =-0.4), educt CH2
1CH2 +CH3 =C2H4 +H 1.600E+13 0.00 -2.38
---- CEC 94, k=(8.43E+13/0/0), (300-2500K, dlog k = +-0.2)
CH3 +O =CH2O +H 8.430E+13 0.0 0.0
---- CEC 94, k_inf=(2.40E16/0.00/439.01), (1000-3000K, dlog k=+-0.5)
---- k_0(AR)=(4.52E17/0.00/379.97), (1000-1700K, dlog k=+-0.3),1.29e+18
---- Fcent(N2)=(0.0/1350/1.0/7830) , (1000-5000K, dFc = +- 0.1)
CH4 +M(4) =CH3 +H +M(4) 2.400E+16 0.000 439.00
LOW 1.290E+18 0.000 379.97
TROE 0.000 1350.0 1.0 7830.0
---- NEXT REACT: T.M. SLOANE CST 63, PP287-313 (1989). FORW. REAC. /2
CH3 +OH >CH3O +H 2.260E+14 0.0 64.8
CH3O +H >CH3 +OH 4.750E+16 -0.13 88.0
---- Deters, R., Otting, M., Temps, F., Wagner, H. Gg., Laszlo, B.
---- Dobe, S., Berces, T. and Marta, F.: work in progress poster 26th Symp.
---- (1996)
CH3 +OH >1CH2 +H2O 2.300E+13 0.0 0.0
1CH2 +H2O >CH3 +OH 7.900E+13 0.0 0.0
----
---- CEC 94. (300-1000K)(Uncertainty=3.16)
---- CH3 +OH =1CH2 +H2O 7.227E+13 0.0 11.64
---- Wilson, C.; Balint-Kurti, G.G. New pathway for the CH3+OH->CH2+H2O reaction on a triplet surface
---- J. Phys. Chem. A:vol102. p 1625 - 1631. 1998.(200-2250K). Transition State Theory.
---- CH3 +OH =1CH2 +H2O 1.110E+03 3.0 11.64
----
---- Oser, H.; Stothard, N.D.; Humpfer, R.; Grotheer, H.H. Direct measurement of the reaction CH3 + OH at ambient temperature in the
---- pressure range 0.3-6.2 mbar. J. Phys. Chem. vol96. p.5359-5363. 1992. 300K (0.00-0.01Bar)
---- CH3 +OH =1CH2 +H2O 1.110E+03 3.0 11.64
-----
---- CEC 94, k1=(3.312E+11/0/37.41), (1000-2500K, dlog k= +-0.5)
---- products: (CH2O+OH),(CH3O+O),(CH3O2) see in the mechanism
---- this is the favoured route (original Volker)
---- CH3 +O2 =CH2O +OH 1.700E+11 0.0 37.400
----
---- OK CEC 91: THIS IS THE FAVORED ROUTE
---- RAUL : MUUY Sensible a esta reaccion!!!, NO emplear CEC 94 ! 24Junio Pongo la segunda Borisov, pruebo solamnete!
CH3 +O2 =CH2O +OH 3.300E+11 0.0 37.400
---- Borisov, A.A.; Dragalova, E.V.; Zamanskii, V.M.; Lisyanskii, V.V.; Skachkov, G.I
---- Mechanism for the Combustion of Methane-Oxygen Mixtures in the Presence of Added N2O
---- Kinet. Catal. vol. 22. p.305. 1981.(880 - 1670 K) 1 Bar. k=(1.999E+12/0.0/54.45)
---- CH3 +O2 =CH2O +OH 1.999E+12 0.0 54.450
----
---- CEC 2003
---- Yu, C.L.; Wang, C.; Frenklach, M. Chemical kinetics of methyl oxidation by molecular oxygen
---- J. Phys. Chem. vol 99. p.14377-14387, 1995. (1000-2500K) (1.45-2.53Bar) Experimental.
---- kcin=(2.228E+12/0.0/92.618) = Kmax !!!!
---- CH3 +O2 =CH2O +OH 2.228E+12 0.0 92.618
----
---- OK CEC 91
CH3 +HO2 =CH3O +OH 1.800E+13 0.0 0.0
---- CEC 94, k=(3.975E13/0/238.03),
---- (500-2500K, dlog k = =-0.5 at 500K rising to -=1.0 at 2000K)
---- CH4 +O2 =CH3 +HO2 3.900E+13 0.0 238.0
----
---- OK W. TSANG AND R.F. HAMPSON, J. PHYS CHEM REF DATA 15, 1087, (1986)
CH3 +HO2 =CH4 +O2 3.600E+12 0.0 0.0
----
---- OK WA 84 NO REC CEC
---- CH3 +CH3 >C2H4 +H2 1.000E+16 0.0 134.000
---- Hidaka, Y.; Nakamura, T.; Tanaka, H.; Inami, K.; Kawano, H.
---- High temperature pyrolysis of methane in shock waves. Rates for dissociative recombination reactions of methyl
---- radicals and for propyne formation reaction. Int. J. Chem. Kinet.vol.22. p701. 1990. (1400-2200K)(2.33-3.75Bar)
CH3 +CH3 =C2H4 +H2 9.998E+13 0.0 133.860
----
---- KINF OK WA 84
---- CEC 94, k_inf=(3.61E13/0.0/0.00), (300-2000K, dlog k=+-0.3)
---- k_0(AR)=(1.27E41/-7.0/11.56), (300-2000K, dlog k=+-0.3),3.63e41
---- Fcent(AR)=(0.62/73/1180/0) , (300-2000K, dFc = +- 0.1)
CH3 +CH3 +M(1) =C2H6 +M(1) 3.610E+13 0.000 0.00
LOW 3.630E+41 -7.000 11.60
TROE 0.620 73.0 1180.0 0.0
******************************************
**** 15a. CH3O Reactions
******************************************
---- OK WA 84 /2 VALUE STEADILY CHANGING.
CH3O +M(1) =CH2O +H +M(1) 5.000E+13 0.0 105.0
---- CEC 94, k=(1.8E+13/0/0), (300-1000K, dlog k = +-0.5)
CH3O +H =CH2O +H2 1.800E+13 0.0 0.0
---- CEC 94, k=(2.170E+10/0/7.3), (300-1000K,
---- dlog k= +-0.1 at 500K rising to +-0.3 ar 300K and 1000K)
CH3O +O2 =CH2O +HO2 3.000E+10 0.0 7.3
---- 22ND SYMP NO REC CEC
---- CH2O +CH3O >CH3OH +CHO 0.600E+12 0.0 13.8
---- CH3OH +CHO >CH2O +CH3O 0.650E+10 0.0 57.2
---- RAUL=Tsang 1986 k=(1E11/0.0/12.45) Valor del mecanismo de Konnov
---- Konnov
CH2O +CH3O =CH3OH +CHO 1.150E+11 0.0 5.2
----
---- CEC 94, k=(1.506E+13/0/0),(300-1000K,
---- dlog k= +-0.3 rising to +-0.7 at 1000K)
---- products: (O2+CH3),(OH+CH2O); k2/k=(0.12+-0.1) at 300K
---- k_r1=(1.32E+14/0/131.36), (300-2500K, dlog k = +-0.5)
CH3O +O =OH +CH2O 1.800E+12 0.0 0.0
---- CH3O +O >O2 +CH3 1.320E+13 0.0 0.0
---- CH3 +O2 >O +CH3O 0.600E+14 0.0 131.0
----
---- Yu, C.L.; Wang, C.; Frenklach, M. Chemical kinetics of methyl oxidation by molecular oxygen
---- J. Phys. Chem. vol.99 p.14377-14387, 1995.(1550-2200K) (1.45-2.53Bar) Expe. Uncertaintly=1.48
---- kcin=(2.951E+13/0.0/127.211) (+,-) 5kJ mol
CH3 +O2 =O +CH3O 4.041E+13 0.0 122.2
----
---- 2003
---- J.V. Michael, S.S. Kumaran and M.-C.Su, J. Physi. Chem. A. 103, 5942 (1999)
---- (0.3-0.6 Bar)
---- CH3 +O2 =O +CH3O 2.108E+13 0.0 135.8
----
---- additional reactions
---- 86 TSA/HAM, k=(1.81E+13/0/0), (300-2500K, dlog k = +-0.7)
CH3O +OH =CH2O +H2O 1.810E+13 0.0 0.0
******************************************
**** 15b. CH2OH Reactions
******************************************
---- OK WA 84 /2 NO REC. CEC.
---- 89HID/OKI2, k(Ar)=(4.40E15/0/125.6), (1372-1842K, dlog k = +-1.0)
CH2OH +M(1) =CH2O +H +M(1) 5.000E+13 0.0 105.0
----
---- (*) GRI 3.0
---- H +CH2O +M( 6) =CH2OH +M( 6) 5.400E+11 0.450 15.048
---- LOW 1.270E+32 -4.820 27.295
---- TROE 0.719 103.0 1291.0 4160
----
---- k_o = 1.27E+32 T^(-4.82) exp(-6530 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 5.40E+11 T^0.45 exp(-3600 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.719) exp(-T/103) + 0.719 exp(-T/1291) + exp(-4160/T)
----
---- OK WA 84 NO REC CEC (1.8E13 FOR CH3O)
CH2OH +H =CH2O +H2 3.000E+13 0.0 0.0
---- OK WA 84 NO REC. CEC
---- CH2OH +O2 =CH2O +HO2 1.000E+13 0.0 30.0
---- CEC 94, (300-1200K, dlog k= +-0.1 at 300K rising to +-0.3 at 1200K)
---- k=(1.570E+15 -1.0 0.0+7.230E+13 0.0 14.97)
CH2OH +O2 =CH2O +HO2 1.570E+15 -1.0 0.0
**** BEGIN DUPLICATE REACTION
CH2OH +O2 =CH2O +HO2 7.230E+13 0.0 14.97
**** END DUPLICATE REACTION
---- additional reactions
CH2OH +H =CH3 +OH 1.000E+13 0.0 0.0
---- ERROR numerico
---- RAUL= CH3+OH=CH2OH+H k=(2.64E19/-1.8/33.724)
---- Dean, A.M. and Westmoreland, P.R. Bimolecular QRRK analyss of methyl radical reactions.
---- Int. J. Chem. Kinet. 1987, v.19, p.207
----CH3 +OH =CH2OH +OH 2.640E+19 -1.8 33.7
******************************************
**** 16. CH3O2 Reactions
******************************************
---- Nota bibliografica:
---- Paso para la formacion de metanol:
---- CH3O2 + H -> CH3OOH
---- CH3OOH -> CH3O + OH
---- CH3O + H -> CH3OH !!!! Debo incluir estos pasos, (??? Referencias???)i
---- Konov: CH3OH+M->CH3O+H
---- kcin_inf=(1.380E+16/0.0/401.071)
---- kcin_low=(5.350E+16/0.0/295.94)
---- Troe =(1-0.82) exp(-T/200.0) + 0.82 exp(-T/ 1438.0)
----
---- A. Konnov 1998
---- ko(AR)= 1.550E-22 / -3.3 / (+,-) 0.3 -> 2.0
---- ko(N2)= 1.600E-22 / -3.3 / (+,-) 0.3
---- kinf= 7.800E+08 / 1.2 / (+,-) 0.3
---- Fc = 0.466 - 1.3 E-04 * T
----
CH3 +O2 +M(1) =CH3O2 +M(1) 7.800E+08 1.2 0.0
LOW 1.650E+26 -3.300 0.0
TROE 0.495 2325.5 10.0 0.0
---- 22ND SYMP. NO REC CEC
---- CH3O2 +CH2O >CH3O2H +CHO 0.130E+12 0.0 37.7
---- CH3O2H +CHO >CH3O2 +CH2O 0.250E+11 0.0 42.3
---- Konnov 1998, k=(0.13E12/0.0/37.7)
---- Konnov 1999 (Tsang,W and Hampson 1986)
CH3O2 +CH2O =CH3O2H +CHO 2.000E+12 0.0 48.74
----
---- CH3O2 +CH3 >CH3O +CH3O 0.380E+13 0.0 -5.0
---- CH3O +CH3O >CH3O2 +CH3 0.200E+11 0.0 0.0
---- Konnov 1998, k=(1.5E13/0.0/-5.0)
---- Konnov 1999 (Tsang,W and Hampson 1986)
CH3O2 +CH3 =CH3O +CH3O 2.400E+13 0.0 0.0
----
---- CH3O2 +HO2 >CH3O2H +O2 0.460E+11 0.0 -10.9
---- CH3O2H +O2 >CH3O2 +HO2 0.300E+13 0.0 163.3
---- CEC 94, k=(2.470E+11/0/-6.57),
---- (298-700K, dlog k= +-0.1 at 298K rising to +-0.3 at 700K)
CH3O2 +HO2 =CH3O2H +O2 2.400E+11 0.0 -6.6
----
---- CH3O2 +CH3O2 >CH2O +CH3OH +O2 0.180E+13 0.0 0.0
---- CH2O +CH3OH +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0
---- CH3O2 +CH3O2 >CH3O +CH3O +O2 0.370E+13 0.0 9.2
---- CH3O +CH3O +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0
----
---- CEC 94, (298-700K, dlog k= +-0.1 at 298K increasing to +-0.3 at 700K)
---- k=(5.480E+10/0/-3.49), products: (CH3O+CH3O+O2), (CH3OH+CH2O+O2)
---- k1/k2=25exp(-1170/T)
---- Wallington, T.J., Dagaut, P., and Kurylo, M.J.
---- Ultraviolet absorption cross sections and reaction kinetics and
---- mechanisms for peroxy radicals in the gas phase.
---- Chem. Rev., 1992, v. 92, pp. 667-710.
---- RAUL= Autores incluyen la reaccion reversa,VK no!)
CH3O2 +CH3O2 =CH2O +CH3OH +O2 2.800E+10 0.0 -3.3
----
CH3O2 +CH3O2 =CH3O +CH3O +O2 2.700E+10 0.0 -3.3
---- Tsang 1986
CH3O2 +CHO >CH3O +H +CO2 3.000E+13 0.0 0.0
CH3O2 +CH3CO >CH3 +CO2 +CH3O 2.400E+13 0.0 0.0
----
CH3O2 +OH =O2 +CH3OH 6.000E+13 0.0 0.0
----
----
******************************************
**** 17. CH4 REACTIONS
******************************************
---- CEC 94, k=(1.325E+04 3.000 33.630), (300-2500K, dlog k = +-0.2
---- at 300 and 2500K reducing to +-0.05 over the range 500-1000K
---- CEC 94, k_r=(6.865E+03/2.74/39.41), dlog k=+-0.3, 300-2500K
---- CH4 +H =H2 +CH3 1.330E+04 3.000 33.600
----
---- Espinosa-Garcia, J.; Corchado, J.C. Recalibration of two earlier potential energy surfaces for the CH4+H->CH3+H2 reaction.
---- Application of variational transition-state theory and analysis of the kinetic isotope effects using rectilinear
---- and curvilinear coordinates. J. Phys. Chem. vol.100, p16561 - 16567. 1996
---- CH4 +H =H2 +CH3 7.107E+13 0.000 48.723
----
---- GRI 3.0
---- Transition-state-theory evaluation of Rabinowitz et al. (1991), Kurylo et al. (1970), Moller et al.(1986),
---- and Kerr and Parsonage (1976).
---- Rabinowitz, M.J., Sutherland, J.W., Patterson, P.M., and Klemm, R.B. (1991) J. Phys. Chem. 95, 674.
---- kcin=(6.60E+08/1.62/45.31)
---- CH4 +H =H2 +CH3 6.600E+08 1.620 45.310
----
---- CEC 2003:
---- Utiliza los resultados de Rabinowitz et al, y Cohen!
---- From Cohen, International Journal Chemical Kinetics vol23, p.683 (1991)
---- kcin=(6.625E+07/1.90/44.89) dlog= (+,-) 0.2 at 1000K
---- 0.4 at 400K and 2500K
CH4 +H =H2 +CH3 1.047E+08 1.900 44.890
----
---- J. W.Sutherland, M.C.Su and J.V.Michael. International Journal Kinetics vol 33, p.669 2001
---- kcin=(1.767E+14/0.0/57.649)
---- CH4 +H =H2 +CH3 1.767E+14 0.000 57.649
----
---- CEC 94, k=(7.230E+08 1.560 35.500)
---- (300-2500K, dlog k= +-0.3 falling to +-0.15 at 2500K)
CH4 +O =OH +CH3 6.923E+08 1.560 35.500
---- CEC 94, k=(1.57E+07/1.83/11.64),(250-2500K, dlog k=+-0.07 rising to 0.15)
CH4 +OH =H2O +CH3 1.000E+07 1.830 11.600
---- NIST: Dunlop, J.R.; Tully, F.P. A kinetic study of OH radical reactions with methane and perdeuterated methane.
---- J. Phys. Chem. vol.97. p11148 - 11150. 1993. (293 - 800 K) (0.53-1Bar).
---- CH4 +OH =H2O +CH3 5.828E+04 2.580 8.980
----
---- Cohen N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH + alkane
---- reactions. Int. J. Chem. Kinet. vol.23 p.397 - 417. 1991.(298-1510K)
---- CH4 +OH =H2O +CH3 1.019E+08 1.600 13.054
----
----
---- CEC 94, k=(9.0E+12/0.0/103.4),(600-1000K, dlog k=+-0.2 rising to +-0.3 at 1000K)
CH4 +HO2 =H2O2 +CH3 1.100E+13 0.0 103.100
---- CH4 +HO2 =H2O2 +CH3 9.000E+12 0.0 103.100
---- CEC 94, k=(3.000E+13 0.0 -1.660), (200-700K, dlog k = +-1.0)
---- MR BERMAN, MC LIN, CHEM. PHYS. 82, 435, 1983 OK CEC 91
CH4 +CH =C2H4 +H 3.000E+13 0.0 -1.700
---- 85BOH/DOB, k=(4.300E+12/0/42.0), 296-707K, delta=1.0
---- Bohland, T.; Dobe, S.; Temps, F.; Wagner, H. Gg.
---- Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons
---- in the temperature range 296 K and 707 K Ber. Bunsenges. Phys. Chem. 1985,89,1110.
CH4 +3CH2 =CH3 +CH3 4.300E+12 0.0 42.000
----
---- Wantuck, P.J.; Oldenborg, R.C.; Baughcum, S.L.; Winn, K.R. Direct measurements of methoxy removal rate
---- constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673-973 K. Symp. Int. Combust. Proc.
---- vol22. p. 973. 1989. (673-973K) (0.09Bar)
---- kcin=(1.319E+14/0/63.02) [1.198+14=(�1.99x10-10 cm3/molecule s)] ( �3783 J/mole)/RT
CH4 +CH3O =CH3OH +CH3 4.300E+12 0.0 42.000
----
---- Konnov 1999
---- Tsang, 1987
---- CH3OH +CH3 =CH4 +CH3O 1.450E+01 3.1 29.0
----
---- Jodkowski, J.T.; Rayez, M.-T.; Rayez, J.-C. Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol
---- 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. J. Phys. Chem. A
---- vol 103. p.3750-3765 1999. (300-2000K)(0Bar) Ab Initio
---- kcin=(3.541E21/5/23.364) [5.88x10-3 (cm3/molecule s)/ 5.00 /e-23364 (J/mole)/RT]
---- CH4 +CH3O =CH3OH +CH3 3.541E21 5.0 23.354
----
---- Tsang, 1986 k=(3.01E+013/0/77.32) (incert = 5 )
---- Konnov 1999
CH4 +CH3O2 =CH3O2H +CH3 1.810E+11 0.0 77.80
----
----
******************************************
**** 18. CH3OH Reactions
******************************************
---- Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T., Pilling, M.J.,
---- Troe, J., Walker, R.W., and Warnatz, J.
---- Summary table of evaluated kinetic data for combustion modeling: Supplement 1.
---- Combust. Flame, 1994, v.98, pp.59-79
---- CEC 94, k_inf=(6.022E+13/0/0), (300-2000K, dlog k=+-0.3)
---- k_0 =(4.56E+44/-8.2/0), (1000-2000K, dlog k=+-0.5), meas. AR, given H2
---- Fc=(0.82/200/1438/0), (1000-2000K, dFc=+-0.1) for AR
CH3 +OH +M(1) =CH3OH +M(1) 6.000E+13 0.000 0.00
LOW 4.560E+44 -8.200 0.00
TROE 0.820 200.0 1438.0 0.0
---- OK WA 84 NO REC CEC
---- CH3OH +H =CH2OH +H2 4.000E+13 0.0 25.5
---- Raul:Konnov 1999
---- Li, S.C., Williams, F.A. i
---- Experimental and numerical studies of two-stage methanol flames.
---- 26th Symp. (Int.) on Combustion, 1996, pp. 1017-1024.
CH3OH +H =CH2OH +H2 1.640E+07 2.0 18.89
---- Raul:Konnov 1999 NO VAN!!
---- Importante con esta reaccion el CO , H2 y H2O se disparan !!!!
---- Warnatz, J. Rate coefficients in the C/H/O system.
---- Combustion Chemistry, ed. W.C. Gardiner,Jr., pub.
---- Springer-Verlag, NY, 1984.
---- CH3OH +H =CH3O +H2 4.000E+13 0.0 25.5
---- Aditional rxn: CH3OH+H=CH3+H2O
---- Hidaka, Y., Oki, T., Kawano, H.
---- Thermal decomposition of methanol in shock waves.
---- J. Phys. Chem., 1989, v. 93, p. 7134.
---- k=(2.0E14/0.0/22.15)
----
---- OK WA 84 NO REC. CEC
---- CH3OH +O =CH2OH +OH 1.000E+13 0.0 19.6
---- Raul:Konnov 1999
---- Keil, D. G., Tanzawa, T., Skolnik, E. G., Klemm, R. B., Michael, J. V.
---- Rate Constants for the Reaction of Ground State Atomic Oxygen with Methanol
---- J. Chem. Phys., 1981, v. 75, p. 2693
CH3OH +O =CH2OH +OH 1.630E+13 0.0 21.03
---- Konnov 1998 k=(1.300E+05 2.5 20.92)
---- Raul:Konnov 1999
---- Warnatz, J. Rate coefficients in the C/H/O system.
---- Combustion Chemistry, ed. W.C. Gardiner, Jr., Springer-Verlag, NY , 1984.
CH3OH +O =CH3O +OH 1.000E+13 0.0 19.56
-----
---- OK WA 84 NO REC CEC
---- CH3OH +OH =CH2OH +H2O 1.000E+13 0.0 7.1
---- Konnov 1998
---- a.k=(3.000E+04 2.65 -3.7), b.k= (5.300E+03 2.65 -3.7)
---- Raul:Konnov 1999
---- a.Li,S.C.; Williams,F.A.
---- Experimental and numerical studies of two-stage methanol flames.
---- 26th Symp. (Int.) on Combustion, 1996, pp. 1017-1024
---- b.Warnatz, 1984
CH3OH +OH =CH2OH +H2O 1.440E+06 2.00 -3.5
CH3OH +OH =CH3O +H2O 1.000E+13 0.00 -7.1
----
---- OK WA, JE DOVE, BER BUNS GES PHYS CHEM 1040-4, 1983 NO REC. CEC
---- CH3OH +HO2 >CH2OH +H2O2 0.620E+13 0.0 81.1
---- CH2OH +H2O2 >HO2 +CH3OH 0.100E+08 1.7 47.9
----
---- Tsang W.
---- Chemical kinetic data base for combustion chemistry. Part 2. Methanol.
---- J. Phys. Chem. Ref. Data, 1987, v. 16, p. 471.
CH3OH +HO2 =CH2OH +H2O2 9.640E+10 0.0 52.58
----
---- Konnov 1999
---- Tsang, 1987
---- CH3OH +CH3 =CH4 +CH2OH 3.190E+01 3.17 30.0
---- CH3OH +CH3 =CH4 +CH3O 1.450E+01 3.1 29.0
----
---- KG SPINDLER, HGG WAGNER, BER BUNSENGES. PHYS. CHEM. 86, 2, 1982
CH3OH +CH3 =CH4 +CH2OH 9.000E+12 0.0 41.1
----
---- 22ND SYMP NO REC. CEC
---- CH3O +CH3OH >CH2OH +CH3OH 0.200E+12 0.0 29.3
---- CH2OH +CH3OH >CH3O +CH3OH 0.220E+05 1.7 45.4
---- Tsang 1987
CH3O +CH3OH =CH2OH +CH3OH 3.000E+11 0.0 17.0
----
---- Tsang, 1987
CH3OH +O2 =HO2 +CH2OH 2.050E+13 0.0 189.1
----
---- Konnov 1998 CH3OH+CH2O=CH3O+CH3O k=( 0.153E+13 0.0 333.2)
---- Konnov 1999
---- Hassinen, E., Koskikallio, J. Flash Photolysis of Methyl Acetate in Gas Phase.
---- Products and Rate Constants of Reactions between Methyl, Methoxy and Acetyl Radicals.
---- Acta Chem. Scand., A 1979, v. 33, p. 625.
CH3O +CH3O =CH3OH +CH2O 2.320E+13 0.0 0.0
******************************************
**** 19. CH3O2H Reactions
******************************************
---- OK CEC 91
---- CH3O2H =CH3O +OH 4.000E+15 0.0 180.5
---- CEC 94, k=(6.0E+14/0/177.10)
---- (500-800K, dlog k = +-0.2 at 600K rising to +-0.5 at 500K and 800K)
CH3O2H =CH3O +OH 6.000E+14 0.0 177.1
---- RAUL:Atkinson 97
---- k=(1.15E+12/0/-1.5884)
---- Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry:
---- supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry
---- J. Phys. Chem. Ref. Data, 1997, v. 26, pp. 521-1011.
---- Comentario es MUCHO mas rapida que CEC 94 ( varios ordenes de magnitud)
---- OK CEC 89
---- OH +CH3O2H =H2O +CH3O2 2.600E+12 0.0 0.0
---- CEC 94, k=(7.23E+11/0/-1.08)
---- (300-1000K, dlog k = +-0.2 at 300K rising to +-0.4 at 1000K)
OH +CH3O2H =H2O +CH3O2 7.300E+11 0.0 -1.0
---- additional reactions
---- CEC 94, k=(3.300E+11/0/19.87),(300-1000K) (incertidumbre = 3.16)
---- CEC 94, k=(1.987E+13/0/19.87),(300-1000K, dlog k=+-0.3 r. to +-0.5 at 1000K)
O +CH3O2H =OH +CH3O2 1.990E+13 0.0 19.90
----
---- Konnov 1998 (incerti = 5)
---- Tsang 1986, Chemical kinetic data base for combustion chemistry.
---- Part I. Methane and related compounds8
---- J. Phys. Chem. Ref. Data
CH3O2 +H2O2 =CH3O2H +HO2 2.400E+12 0.0 41.80
----
---- Tsang, 1986 k=(3.01E+12/0/57.37) (incert = 2)
---- Konnov 1999
CH3O2 +CH3OH =CH3O2H +CH2OH 1.810E+11 0.0 57.70
******************************
**** *
**** 4. C2 MECHANISM C *
**** *
******************************
******************************************
**** 20. C2H REACTIONS
******************************************
---- OK CEC 91
---- C2H +O =CO +CH 1.000E+13 0.0 0.0
---- CEC 94, k= (1.024E+13/0/0), (300-2500K, dlog k = +-1.0)
---- RAUL: Devriendt, K., Peeters, J.97,(experimental)
---- Direct identification of the C2H
---- J. Phys. Chem., 1997, v. A101, pp. 2546-2551.
C2H +O =CO +CH 2.410E+11 0.0 1.91
----
---- OK CEC 89 OK TSANG & HAMPSON 86. CHANNEL CHO + OH NOT CONSIDERED
---- C2H +O2 =HCCO +O 3.000E+12 0.0 0.0
---- CEC 94, k=(1.81E+13/0/0), (300K, dlog k = +-0.5)
---- products: (HCCO+O),(CH+CO2),(H+CO+CO),(O+C2HO),(CHO+OH)
---- RAUL: Konnov 1999
---- Laufer, A.H. and Lechleider,
---- R. Reaction of ethynyl radicals with O2. Rate constant for formation of CO.
---- J. Phys. Chem. 1984, v.88, p.66.
C2H +O2 =HCCO +O 6.000E+11 0.0 0.0
---- additional reactions
---- RAUL: Antigua VK k=(9.000E+12 0.0 0.0)
---- Thiesemann, H.; Taatjes, C.A (Experimental)
---- Temperature dependence of the reaction C2H(C2D)+O2 between 295 and 700 K
---- Chem. Phys. Lett,vol 270, p.580 - 586, 1997
C2H +O2 =CO2 +CH 4.700E+13 -0.16 0.0
---- CEC 94, k=(1.81E+12/0/0), (298 K, dlog k = +- 1.0)
---- Tsang, 1986 (incert = 3)
C2H +CH4 =C2H2 +CH3 1.810E+12 0.0 0.0
******************************************
**** 20A. HCCO REACTIONS
******************************************
---- CEC 94, k=(1.506E+14/0/0), (300-2500K, dlog k = +-0.4)
---- products: (CH2+CO), (H2+C2O), (HCCOH); only first considered here
---- RAUL: Frank, P.; Bhaskaran, K.A.; Just, Th.
---- Acetylene oxidation: The reaction C2H2 + O at high temperatures
---- 21st Symp. Int. Combust. Proc, 1988
HCCO +H =3CH2 +CO 1.500E+14 0.0 0.0
---- CEC 94, k=(9.635E+13 0.0 0.0), (300-2500K, dlog k= +-0.3)
---- WITHOUT REVERSE REACTION (NO ELEMENTARY REACTION)
---- Frank, P., Bhaskaran, K.A., and Just, Th.
---- (1988) 21st Symposium (International) on Combustion, p. 885.
HCCO +O >CO +CO +H 9.640E+13 0.0 0.0
---- JA MILLER, RE MITCHELL, MD SMOOKE, RJ KEE, 19TH SYMP., 181-96,1982
---- NO REC. CEC
HCCO +3CH2 =C2H3 +CO 3.000E+13 0.0 0.0
---- additional reactions
---- CEC 94, k=(2.77E+11/0/-7.15), (300-1000K, dlog k = +-1.0)
---- products: (HCCO),(H+C2O)
CH +CO =HCCO 2.800E+11 0.0 -7.1
----
----
---- RAUL: SPECIAL GRI3, k_inf=(5.000E+13/0/0), (300-2500K)
---- Berman et al. (1982)
---- Berman, M.R., Fleming, J.W., Harvey, A.B., and Lin, M.C.
---- (1982) 19th Symposium (International) on Combustion, p. 73.
---- Frank et al. (1988)
---- Frank, P., Bhaskaran, K.A., and Just, Th.
---- (1988) 21st Symposium (International) on Combustion, p. 885
---- k_0 =(2.69E+28/-3.74/8.09)
---- Fc=(0.576/237/1652/5069), dFc=+-0.1 for AR
**** CH +CO +M(2) =HCCO +M(2) 5.000E+13 0.000 0.00
**** LOW 2.690E+28 -3.740 8.09
**** TROE 0.576 237.0 1652.0 5069.0
---- Original: M( 1)! Ahora M( 6)
---- SOURCE:
---- Results of an RRKM calculation based on the recombination rate data of Berman et al. (1982)
---- and the decomposition rate data of Frank et al. (1988) GRI 3.0
---- N2 1.0
---- H2 Enhanced by 2.0
---- H2O Enhanced by 6.0
---- CH4 Enhanced by 2.0
---- CO Enhanced by 1.5
---- CO2 Enhanced by 2.0
---- C2H6 Enhanced by 3.0
---- AR Enhanced by 0.7
----
----- N2:1.0; H2:2.0; H2O:6.0; CH4:2.0; CO:1.5; CO2:2.0; C2H6:3.0; AR:0.7
******************************************
**** 21. C2H2 REACTIONS
******************************************
---- P FRANK, T JUST, COMB AND FLAME 38, 231, 1980 NO REC. CEC
---- 84 WAR, k(AR)=(4.0E+16/0/447.0), (1500-3000K, dlog k = +-0.5)
---- C2H2+M(1)=C2H+H+M(1); k=(3.600E+16 0.0 446.0)
---- RAUL: SPECIAL GRI 3.0
---- Sidhu et al. (1992) and P. Frank C and F.
---- Sidhu, S.S., Kern, R.D., Xie, K., Chen, H., and Harding, L.B.
---- (1992) Combust. Sci. Techn. 82, 101.
---- kinf=(1.000E+17/-1.000/0.00)
---- ko= (3.750E+33/-4.800/8.94)
---- Fcen=(0.646/132.0/1315.0/5566.0)
H +C2H +M(1) =C2H2 +M(1) 1.000E+17 -1.000 0.00
LOW 3.750E+33 -4.800 8.94
TROE 0.646 132.0 1315.0 5566.0
----- M_original = M(1) Ahora M(6)
----- N2:1.0; H2:2.0; H2O:6.0; CH4:2.0; CO:1.5; CO2:2.0; C2H6:3.0; AR:0.7
----- N2 1.0
----- H2 Enhanced by 2.0
----- H2O Enhanced by 6.0
----- CH4 Enhanced by 2.0
----- CO Enhanced by 1.5
----- CO2 Enhanced by 2.0
----- C2H6 Enhanced by 3.0
----- AR Enhanced by 0.7
-----
---- JA MILLER, RE MITCHELL, MD SMOOKE, RJ KEE, 19TH SYMP., 181-96,1982
---- NO REC CEC
C2H2 +O2 =HCCO +OH 2.000E+08 1.5 126.0
---- CEC 94, k=(6.620E+13/0/116.40),(1000-3000K, dlog k=+-1.0)
---- CEC 94, k_r=(1.080E+13/0/9.06),(300-2500K, dlog k=+-0.4)
---- RAUL:Konnov, 1999
---- Peeters,J., Van Look,H., Ceursters,B.
---- Absolute rate coefficients of the reactions of C2H with NO and H2 between 295
---- and 440 K. J. Phys. Chem. 1996, v. 100, pp. 15124-1512.
C2H +H2 =C2H2 +H 7.880E+05 2.39 1.446
---- CEC 94, k=(7.23E+06/2.1/6.57),(295-2500K, dlog k = +-0.2),
---- k2/k=0.7+-0.2 over the whole range
----VK CEC 1994 (branching ratio 0.3 / 0.7)
C2H2 +O =3CH2 +CO 2.200E+06 2.1 6.57
C2H2 +O =HCCO +H 5.100E+06 2.1 6.57
---- CEC 94, k=k1+k2=(6.000E+13/0.0/54.0), (1000-2000K, dlog k = +-1.0)
---- products: (h2o+c2h),(h+ch2co),(c2h2oh), last at low temp. and high press.
---- RAUL: Miller, J.A. and Melius, C.F. GRI3.0.
---- A theoretical analysis of the reaction between hydroxyl and acetylene.
---- 22nd Symp. (Int.) on Combustion, The Combustion Institute,1988, pp.1031-1039.
C2H2 +OH =H2O +C2H 3.385E+07 2.0 58.52
---- OK CEC 91
----*****C2H2 +C2H =C4H2 +H 3.000E+13 0.0 0.0
---- CEC 94, k=(9.0E+13/0.0/0.0), (300-2700K,
---- dlog k = +-0.2 at 298K rising to +-0.5 at 2700K)
---- RAUL: Shin, K.S.; Michael, J.V, (experimental, 296-1480K).
---- Rate constants (296-1700 K) for the reactions ...
---- J. Phys. Chem, 1991, 5864 - 5869, vol 95
C2H2 +C2H =C4H2 +H 1.810E+14 0.0 1.940
******************************************
**** 21A. CH2CO REACTIONS
******************************************
---- OK WA 84 NO REC CEC, k(Ar)=(3.6e+15/0/247.999), 1000-2000K, dlog k=+-0.5
---- 86 FRA/BHA, k(Ar)=(2.30E+15/0/241.03), (1650-1850K, dlog k = +- 1.0)
---- RAUL: original k=(1.000E+16 0.0 248.0)
---- Konnov, 1999
---- Wagner, H.Gg., and Zabel, F. (1971) Ber. Bunsenges. Phys. Chem. 71, 114.
---- Frank, P., Bhaskaran, K.A., and Just, T. (1986) J. Phys. Chem. 90, 2226.
---- kinf=(3.000E+14/0.000/296.8)
---- ko= (2.300E+15/0.000/240.78)
---- Fcen=(?)
----
---- CH2CO +M(1) =3CH2 +CO +M(1) 3.000E+14 0.000 296.8
---- LOW 2.300E+15 0.000 240.78
---- TROE 0.000 000.0 000.0 000.0
----
---- H2O:6.2; AR:1.0; H2:2.5; CO:1.875; CO2:3.75; CH4:3.2; CH3OH:7.5
----
---- GRI 3.0 With the same references developed pressure dependence!
---- Original M( 1) ahora M( 6)
---- k_o = 2.69E+33 T^(-5.11) exp(-7095 cal/mol /RT) cm^6/mol^2 s
---- k_inf = 8.10E+11 T^0.5 exp(-4510 cal/mol /RT) cm3/mol s
---- F_cent = (1-0.591) exp(-T/275) + 0.591 exp(-T/1226) + exp(-5185/T)
----
3CH2 +CO +M(1) =CH2CO +M(1) 8.100E+11 0.500 29.65
LOW 2.690E+33 -5.110 18.81
TROE 0.591 275.0 1226.0 5185.0
----
----
---- Third-body efficiencies GRI 3.0:
---- N2 1.0
---- H2 Enhanced by 2.0
---- H2O Enhanced by 6.0
---- CH4 Enhanced by 2.0
---- CO Enhanced by 1.5
---- CO2 Enhanced by 2.0
---- C2H6 Enhanced by 3.0
---- AR Enhanced by 0.7
----
----
---- Original Konnov!:
---- CH2CO +M( 1) =3CH2 +CO +M( 1) 3.000E+14 0.000 296.8
---- LOW 2.300E+15 0.000 240.78
---- TROE 0.000 000.0 000.0 000.0
---- H2O:6.2; AR:1.0; H2:2.5; CO:1.875; CO2:3.75; CH4:3.2; CH3OH:7.5
----
---- OK CEC 91 TWICE FASTER
---- CH2CO +H =CH3 +CO 3.600E+13 0.0 14.1
---- CEC 94, k=(1.81E+13/0/14.13), (200-2000K, dlog k=+-0.5 rising to 1.0 at
---- 2000K), products: (ch3+co),(ch2cho),(h2+hcco);
---- k2/k is considered small, k3 may be important at high temp.
---- RAUL: original: k=(3.000E+13 0.0 14.1)
---- J. Hranisavljevic, J., Kumaran, S.S., Michael, J.V.
---- (1998) 27th Symp. (Int.) on Combustion, pp. 159-166.
---- Experimental (863-1400K)
CH2CO +H =CH3 +CO 3.280E+10 0.851 11.9
---- OK CEC 91. PRODUCTS: WA 18 TH SYMP. COMB, 369-84, 1981
---- CH2CO +O =CHO +CHO 2.300E+12 0.0 5.7
---- CEC 94, k=(2.29E+12/0/5.65), (230-500K, dlog k = +-0.3)
---- products: k1=(CH2O+CO),k2=(CHO+H+CO),k3=(CHO+CHO)
---- no rec. are made for the branching ratio, assume
CH2CO +O =CH2O +CO 0.750E+12 0.0 5.7
CH2CO +O >CHO +H +CO 0.750E+12 0.0 5.7
CH2CO +O =CHO +CHO 0.750E+12 0.0 5.7
---- OK CEC 91
---- CH2CO +OH =CH2O +CHO 1.000E+13 0.0 0.0
---- CEC 94, k=(1.024E+13/0/0), (300-2000K, dlog k= =-1.0)
---- products: (CH2OH+CO), (CH2O+CHO)
---- CH2CO+OH=>(CH3+CO2)(CH2OH+CO)(CH3O+CO)(HCO+CH2O)(HCCO+H2O)(CH2O+H+CO)
---- k(overall)= 7.20E12 0.00 0.00 D/U 296 [92OEH/TEM]
---- According to the measurements of [94GRU/NOL]
---- k(2)/k=0.60+-0.10; k(4)/k<0.02; k(5)/k<0.01; estimated: k(1)/k= 0.25
---- here k(1)/k= 0.35 and k(2)/k= 0.65
CH2CO +OH =CH3 +CO2 2.520E+12 0.0 0.0
CH2CO +OH =CH2O +CHO 4.680E+12 0.0 0.0
---- Dagaut 1991
CH2CO +O2 =CH2O +CO2 1.000E+08 0.0 0.0
******************************************
**** 25. C2H3 REACTIONS
******************************************
---- CEC 94, k_inf=(2.00E14/0.00/166.28), (500-2500K, dlog k=+-0.5)
---- k_0(AR+N2)=(4.16E41/-7.5/190.39), (500-2500K, dlog k=+-0.5)
---- 1.187e+42, 1.039e+42 scaled for H2
---- Fcent=(0.35) , (500-2500K, dFc = +- 0.1)
C2H3 +M(1) =C2H2 +H +M(1) 2.000E+14 0.000 166.3
LOW 1.000E+42 -7.500 190.4
TROE 0.350 0.0 0.0 0.0
---- Tsang, 1986. Uncertainty = 3.0
C2H3 +OH =C2H2 +H2O 3.011E+13 0.0 0.0
---- CEC 94, k=(1.2E+13/0/0), (300-2500K, dlog k = +-0.5)
C2H3 +H =C2H2 +H2 1.200E+13 0.0 0.0
---- CEC 94, k=(3.01E+13/0/0), (300-2000K, dlog k= +-0.5), 1/3 FOR EACH REACTION
C2H3 +O =C2H2 +OH 1.000E+13 0.0 0.0
C2H3 +O =CH3 +CO 1.000E+13 0.0 0.0
C2H3 +O =CHO +3CH2 1.000E+13 0.0 0.0
----
---- change of reaction products, !!!! important note !!!!
---- !!!! then reaction 1CH2 + CH3 ---> C2H4 + H necessary !!!!!
---- !!!! additional reaction channel CH + H2O ---> CH2O + H (*) necessary
---- to channel CH + H2O ---> 3CH2 + OH (*) too,
---- sum of rate constant for above reaction (*) are equal to
---- recommendation of CEC1992 !!!!!
---- decreases flame velocities to correct magnitude
---- CEC 1992=1994
---- C2H3+O2=>(CH2O+CHO);(CH2CHO+O);(C2H2+HO2)
---- k1=k-(k(CH2CHO+O)+k(C2H2+HO2))
----
---- RQ 15/09/2004
---- C2H3 +O2 =CH2O +CHO 5.420E+12 0.0 0.0
**** BEGIN DUPLICATE REACTION
---- C2H3 +O2 =CH2O +CHO -7.000E+14 -0.6 13.1
**** END DUPLICATE REACTION
---- Esta reacion saca el anterior comentario de Volker.
----
---- Mebel, A.m.; Diau, E.W.G.; Lin, M.C.; Morokuma, K. Ab initio and RRKM calculations for multichannel rate constants
---- of the C2H3 + O2 reaction . J. Am. Chem. Soc. vol.118 p.9759-9771. 1996. (300-3500K) (1.01 Bar)
---- 2.76x10-11 (cm3/molecule s) (T/298 K)-1.39 e-4240 (J/mole)/RT
---- kcin=(4.569E16/-1.39/4.24)
---- C2H3 +O2 =CH2O +CHO 4.569E16 -1.39 4.240
----
---- Krueger, H.; Weitz, E. Diode laser probes of vinyl radical kinetics: The reaction of C2H3 with HCl and DCl
---- J. Chem. Phys. vol 88. p.1608. 1988. (298K 0.0Bar)
---- C2H3 +O2 =CH2O +CHO 6.023E+12 0.0 0.0
----
---- Slagle, I.R.; Park, J.-Y.; Heaven, M.C.; Gutman, D. Kinetics of polyatomic free radicals produced by laser
---- photolysis. 3. Reaction of vinyl radicals with molecular oxygen. J. Am. Chem. Soc. vol.106. p.4356. 1984.
---- (297-602K) 0 Bar. kcin=(3.969E+12/0.0/-1.048) (+/-) 419 J/mol
---- (+,-)( 1.31x10-12 cm3/molecule s) = (+,-) 7.890E+11
---- C2H3 +O2 =CH2O +CHO 3.969E+12 0.0 -1.0
---- C2H3 +O2 =CH2O +CHO 3.969E+14 0.0 1.0
----
---- RQ 11-11-2004
---- 2003 From Slage and Knyazev
---- kcin=(5.721E+13/0/1)
---- (+,-) 0.1 at 290K * 1.25 7.151E+13
---- (+,-) 0.3 at 900K * 2.00 1.114E+14
---- 15/09/2004
C2H3 +O2 =CH2O +CHO 5.721E+13 0.0 -1.0
----
---- Hidaka Y; Toshihide Nishimori, Kazutaka Sato, Yusuke Henmi, Rieko Okuda and Koji Inami.
---- Shock tube and modeling study of ethylene pyrolysis and oxidation. Combustion and Flame 117:755-776 1999.
---- kcin=(4.000E+21/-3.0/2.4)
---- C2H3 +O2 =CH2O +CHO 4.000E+21 -3.0 2.4
----
---- VK Bozzelli, J.w., Dean, A.M., J. Phys. Chem. 92, 651, (1992)
---- VK Bozzelli T(high) value
---- kcin=(2.460E+15/-0.78/13.12)
C2H3 +O2 =CH2CHO +O 2.460E+15 -0.78 13.12
----
---- Mebel, A.m.; Diau, E.W.G.; Lin, M.C.; Morokuma, K. Ab initio and RRKM calculations for multichannel rate constants
---- of the C2H3 + O2 reaction . J. Am. Chem. Soc. vol.118 p.9759-9771. 1996. (300-3500K) (1.01 Bar)
---- 9.65x10-14 (cm3/molecule s) (T/298 K)-0.29 e-41.57 (J/mole)/RT
---- kcin=(3.0329E+11/0.29/0.04157)
---- NOTA: En el articulo original hay un error en el factor exponencial!!!!
---- En el articulo Mabel da un exponente de (-0.29) ojo valor real (+0.29)!!
---- C2H3 +O2 =CH2CHO +O 3.032E+14 0.29 0.0415
----
---- Mebel 1996 (Lin) (1.340E+06 1.61 -1.61)
---- Mebel, A.M., Diau, E.W.G., Lin, M.C., and Morokuma, K.
---- (1996) J. Am. Chem. Soc. 118, 9759
C2H3 +O2 =C2H2 +HO2 1.340E+06 1.61 -1.61
******************************************
**** 22A. CH3CO REACTIONS
******************************************
---- KINF OK WA 84
---- CEC 94, k_inf=(5.06E11/0/28.77), (300-500K, dlog k=+-0.5),* 3.16 !!!
---- k_0(N2)=(1.52E12/0/ 0.00), (350-350K, dlog k=+-0.5),3.81e12
---- k_0(HE)=(1.09E14/0/15.88), (400-500K, dlog k=+-0.2),3.11e14
---- Fcent(N2)=(0.60) , (300-350K, dFc = +- 0.1)
---- Fcent(HE)=(0.50) , (400-500K, dFc = +- 0.1)
CH3 +CO +M(1) =CH3CO +M(1) 5.058E+11 0.000 28.77
LOW 3.109E+14 0.000 15.88
TROE 0.600 0.0 0.0 0.0
---- RAUL: original (CH3CO+H=CH2CO+H2) k=(2.00E+13/0.0/0.0)
---- Konnov 1999
---- Bartels,M., Edelbuttel-Einhaus,J., and Hoyermann,K.
---- The detection of CH3CO, C2CHO by rempi/mass spectrometry and
---- the application to the study of the reactions H + CH3CO and O + CH3CO
---- 23 th Symp. (Int.) on Combustion. 1991, pp.131-138
CH3CO +H =CH2CO +H2 1.150E+13 0.0 0.0
CH3CO +H =CH3 +CHO 2.150E+13 0.0 0.0
******************************************
**** 22B. CH2CHO REACTIONS
******************************************
---- NOTA2:INCORPORADAS EN EL MECANISMO DE BAJA TEMPERATURA
CH2CHO +O2 =CH2CO +HO2 1.100E+11 0.0 0.0
CH2CHO +O2 =CH2O +CO +OH 3.200E+10 0.0 0.0
---- ANALOGY WITH CH3CO
---- RAUL: Rate constant from Bartels, M., Edelbuttel-Einhaus, J., and Hoyermann, K.
---- (1990) 23rd Symp. (Int'l.) on Combustion p. 131.
---- Product branching ratio from Ohmori, K., Miyoshi, A., Matsui, H., and Washida, N.
---- (1990) J. Phys. Chem. 94, 3253.
---- kcin=(2.100E+13/0.0/0.0)
---- kcin=(1.100E+13/0.0/0.0)
CH2CHO +H =CH3 +CHO 2.100E+13 0.0 0.0
CH2CHO +H =CH2CO +H2 1.100E+13 0.0 0.0
******************************************
**** 23. C2H4 REACTIONS
******************************************
---- RAUL: GRI3 incluye dependencia de la presion,
---- k0=(1.58E+51*T^(-9.30)*exp(-408.8/RT)
---- kinf=(8.00E+12*T^0.44*exp(-371.058/RT)
---- Fcen= (1-0.735)*exp(-T/180) + 0.735*exp(-T/1035) + exp(-5417/T)
---- N2 1.0
---- H2 Enhanced by 2.0
---- H2O Enhanced by 6.0
---- CH4 Enhanced by 2.0
---- CO Enhanced by 1.5
---- CO2 Enhanced by 2.0
---- C2H6 Enhanced by 3.0
---- Ar Enhanced by 0.7
----
---- Ref. Tsang, kinf, Troe, Zelson, L.S., Davidson, D.F., and Hanson, R.K.
---- (1994) J. Quant. Spectrosc. Radiat. Transfer 52,31.
----
---- C2H4 +M( 6) =C2H2 +H2 +M( 6) 8.000E+12 0.440 371.06
---- LOW 1.580E+51 -9.300 408.80
---- TROE 0.735 180.0 1035.0 5417.0
----
---- CEC 94, k(AR)=(3.490E+16/0.0/299.32), (1500-3200K, dlog k = +-0.3)
C2H4 +M(1) =C2H2 +H2 +M(1) 3.490E+16 0.0 300.0
----
---- RAUL: GRI3 incluye dependencia de la presion,
---- k0=(1.40E+30*T^(-3.86)*exp(-13.87/RT)
---- kinf=(6.08E+12*T^0.27*exp(-1.17/RT)
---- Fcen= (1-0.782)*exp(-T/207.5) + 0.782*exp(-T/2663) + exp(-6095/T)
---- Just, T., Roth, P., and Damm, R. (1977) 16th Symposium (International) on Combustion, p. 961
---- Tanzawa, T., and Gardiner, W.C. (1980) Combust. Flame 39, 241.
----
---- C2H3 +M( 6) +H =C2H4 +M( 6) 6.080E+12 0.270 1.1700
---- LOW 1.400E+30 -3.860 13.870
---- TROE 0.782 207.5 2663.0 6095.0
-----
---- CEC 94, k(AR)=(2.590E+17/0.0/404.09),(1500-3200K, dlog k = +-0.5)
C2H4 +M(1) =C2H3 +H +M(1) 7.400E+17 0.0 404.0
----
---- OK CEC 91
---- C2H4 +H =C2H3 +H2 0.540E+15 0.0 62.9
---- NIST
---- Knyazev, V.D.; Bencsura, A.; Stoliarov, S.I.; Slagle, I.R.
---- Kinetics of the C2H3 + H2 = H + C2H4 and CH3 + H2 = H + CH4 reactions
---- J. Phys. Chem, 11346-11354,vol 100, 1996
C2H4 +H =C2H3 +H2 3.808E+07 1.93 54.21
----
---- 2003
---- kcin=(3.9E-22/ 3.62 / [5.67/T] )
---- (+,-) 2.51 {400 < T < 2000K}
---- C2H4 +H =C2H3 +H2 2.349E+02 3.62 47.140
----
---- CEC 94 C2H4+O=>(CH2CHO+H);(CHO+CH3);(CH2O+CH2);(CH2CO+H2)
---- k=(1.355E+07/1.88/0.765) all channel,(300-2000K, dlog k=+-0.1 r. to +-0.3)
---- k1/k=0.35+-0.05, k2/k=0.6+-0.1, k3/k=0, k4/k=0.05+-0.10 at p>3torr,T>300K
----
---- C2H4+O=> %
---- CH2CHO+H (k1/k)=0.3468 4.700E+06 4.065E+06 0.30
---- CHO+CH3 (k2/k)=0.5977 8.100E+06 8.800E+06 0.65 k=1.355E+07 / 1.88 / 0.765
---- CH2O+CH2 (k3/k)=0.0494 6.700E+05
---- CH2CO+H2 (k4/k)=0.0022 3.000E+04
----
---- NIST k=2.253E+07 / 1.88 / 0.765
----
----
---- Konnov: Sin incluir C2H3 +OH kglobal=VK, y se incluye k3/k
---- Inluyendo C2H3 +OH kglobal=2.86E+07!!!!
----
C2H4 +O =CH2CHO +H 4.700E+06 1.88 0.75
C2H4 +O =CHO +CH3 8.100E+06 1.88 0.75
C2H4 +O =CH2CO +H2 6.700E+05 1.88 0.75
C2H4 +O =CH2O +1CH2 3.000E+04 1.88 0.75
----
---- Mahmud, K., Marshall, P., and Fontijn, A. A high-temperature photochemistry kinetics study of the reaction of
---- O(3P) atoms with ethylene from 290 to 1510 K. J. Phys. Chem. 1987, v.91, p.1568.
---- kcin=(1.510E+07/1.88/ 14.58)
---- 1.33x10-12 (cm3/molecule s) (T/298 K)1.91 e-15631 (J/mole)/RT (1.506E+07/1.91/15.63)
---- C2H4 +O =C2H3 +OH 1.510E+07 1.88 14.58
C2H4 +O =C2H3 +OH 1.706E+07 1.91 15.63
----
---- NIST:Gaedtke, H.; Glaenzer, K.; Hippler, H.; Luther, K.; Troe, J.
---- Symp. Int. Combust. Proc.,1973, p.295. kcin=(6.986E+11/0/0)
---- C2H4 +O =C2H3 +OH 6.986E+11 0.0 0.00
----
---- Original k=(2.050E+13/0.0/24.9)
---- CEC 94, k=(2.050E+13/0.0/24.9), (650-1500K, dlog k = +-0.5)
---- 2003 = 94
----
---- Tully, F.P. (1988) Chem. Phys. Lett. 143, 510.
---- kcin=(2.017E+13/0.0/24.86) Hydrogen-atom abstraction from alkenes by OH. Ethene and 1-butene
---- (650-901K) (0.13-0.47 Bar) Medido!!!!
C2H4 +OH =C2H3 +H2O 1.517E+13 0.0 24.86
----
---- Liu, A.D., Mulac, W.A., and Jordan, C.D. (1987) Int. J. Chem. Kinet. vol.92. p.3828 1988 (723-1173K) (1.01Bar) Transition Stated
---- Kinetic isotope effects in the gas-phase reaction of hydroxyl radicals with ethylene in the temperature range 343-1173K
---- and at 1-atm pressure.
---- Theory kcin=(2.095E+06[+/-1.274E+05] // 2.01 // 4.864[+/-0.097] ) Sugeridad por CEC 94
---- C2H4 +OH =C2H3 +H2O 2.095E+06 2.0 4.864
----
---- GRI 3.0, Utiliza los valores de los anteriores pero desarrolla la dependencia de T (fit the polino)
---- Bott, J.F., and Cohen, N. (1991) Int. J. Chem. Kinet. 23, 1075
---- kcin=(3.605E+06/2.0/10.45)
---- C2H4 +OH =C2H3 +H2O 3.605E+06 2.0 10.45
----
---- additional reactions
---- CEC 94, k=(9.65E+13/0/0), k2/k=0.2 over range 300-1000K
---- dlog k= +-0.5 at 1000K reducing to +-0.2 at 300K, d(k2/k1)=+-0.1
C2H4 +1CH2 =C3H6 7.240E+13 0.0 0.00
----
---- CEC 94, k=(1.32E+14/0/-1.44), (200-700K, dlog k = +- 1.0)
---- products: (C3H4+H),(3CH2+C2H3)
---- C2H4 +CH =C3H4 +H 1.343E+14 0.0 -1.44
----
---- NIST, Experimental
---- Berman, M.R.; Fleming, J.W.; Harvey, A.B.; Lin, M.C. Temperature Dependence of
---- the Reactions of CH Radicals with Unsaturated Hydrocarbons. Chem. Phys. vol 73. p.27.00 1982
---- kcin=(1.343E+14/0.0/-1.44) [2.23x10-10 (�2.66x10-11 cm3/molecule s) // 0.0 // e+{1.438 (�288J/mole)/RT}]
C2H4 +CH =C3H4 +H 1.343E+14 0.0 -1.44
----
---- Esta reaccion despelota TODO cuando se usa CEC
---- CEC 94, k=(4.16E+12/0/46.56), (400-3000K, dlog k = +-0.5)
---- Incertidumbre 3.16
---- C2H4 +CH3 =C2H3 +CH4 4.160E+12 0.00 46.56
----
---- GRI 3.0
---- kcin=(2.27E05/2/38.45) Kerr, J.A., and Parsonage, M.J.
---- (1976) Evaluated Kinetic Data on Gas Phase Hydrogen Transfer
---- Reactions of Methyl Radicals, Butterworths, London.
---- C2H4 +CH3 =C2H3 +CH4 2.270E+05 2.0 38.45
----
---- CEC 2003
---- kcin=(1.000E+-16/1.56/ {8.37/T}) -> kcin=(6.023E+07/1.56/69.58)
---- (+,-) 3.16 [650-2800K]
---- C2H4 +CH3 =C2H3 +CH4 1.903E+08 1.56 69.58
----
---- Zhang, H-X.; Back, M.H. Rate constants for abstraction of hydrogen from ethylene
---- by methyl and ethyl radicals over the temperature range 650-770K. Int. J. Chem. Kinet.
---- vol.22 pag.21. 1990 (0.27 - 0.53 Bar)(650-776K) Uncertaintly=1.58
---- kcin=(5.011E+11/0.0/63.024) ( �3151 J/mole)
C2H4 +CH3 =C2H3 +CH4 5.011E+11 0.0 63.02
----
---- Tsang 1986
---- kcin=(4.222E+13/0.0/241.12) Uncertainty=5.0
C2H4 +O2 =C2H3 +HO2 4.222E+13 0.0 241.12
----
---- RQ : Incremento el consumo de fuel para obtener el valor de methanol!
---- 11-11-2004
---- Next three Konnov:
---- kcin1=(1.000E+11 0.0 41.80)
---- kcin2=(1.200E+11 0.0 28.21)
---- kcin3=(1.000E+11 0.0 60.61)
---- Multiplico por 10 !!!!!
---- Estimated
---- kcin=(1.000E+11/0.0/41.80)
---- (2.000E+14/0.0/41.80)
C2H4 +CH3O =C2H3 +CH3OH 1.000E+11 0.0 41.80
----
---- From Nancy mechanism: No funciona bien!
---- kcin=(1.440E+01/3.1/28.84)
---- C2H3 +CH3OH =C2H4 +CH3O 1.440E+01 3.1 28.84
----
---- Tsang, W. and Hampson, R.F. Chemical kinetic data base for combustion chemistry.
---- Part I. 1986, v.15, p.1087
---- kcin=(1.200E+11/0.0/28.21)
C2H4 +CH3O =CH2O +C2H5 1.200E+12 0.0 28.21
---- Estimated
---- kcin=(1.000E+11/0.0/60.61)
C2H4 +CH3O =OXIRAN +CH3 1.200E+12 0.0 60.61
----
---- Tsang, W. 1987. Uncetainty=5.0
---- kcin=(3.171E+01/3.2/30.01) [4.38x10-15(cm3/molecule s)/(T/298 K)3.20/-30015 (J/mole)/RT]
---- C2H4 +CH2OH =CH3OH +C2H3 3.171E+01 3.2 30.01
C2H4 +CH2OH =CH3OH +C2H3 1.585E+02 3.2 30.01
----
----
******************************************
**** 23A. CH3CHO REACTIONS
******************************************
---- fall-off reaction
---- CEC 94, here values given only for p = 1 atm, k=(7.0E+15/0/341.7),
---- (750-1200K, dlog k= +-0.4)
CH3CHO +M(1) =CH3 +CHO +M(1) 2.200E+15 0.0 342.8
LOW 5.100E+12 0.000 131.4
TROE 0.500 0.0 0.0 0.0
---- CEC 94, k=k1+k2=(4.095E+09/1.16/10.06),(300-2000K, dlog k=+-0.1 r. to +-0.4)
CH3CHO +H =CH3CO +H2 2.150E+09 1.16 10.0
CH3CHO +H =CH2CHO +H2 1.850E+09 1.16 10.0
---- CEC 94, k=k1+k2=(5.84E+12/0/7.57),(298-1500K, dlog k= +-0.05 r. to +-0.5)
CH3CHO +O =CH3CO +OH 5.600E+12 0.0 7.6
CH3CHO +O =CH2CHO +OH 2.400E+11 0.0 7.6
---- CEC 94, k=(3.000E+13/0/163.8),(600-1100K, dlog k = +-0.5 rising to +-1.0)
CH3CHO +O2 =CH3CO +HO2 4.000E+13 0.0 164.3
---- CEC 94, k=(2.35E+10/0.73/-4.66), (250-1200K, dlog k=+-0.1 rising to +-0.3)
---- main channel -> CH3CO +H2O, other CH2CHO + H2O
---- RAUL: Se incluye el canal paralelo
---- Taylor, P.H.; Rahman, M.S.; Arif, M.; Dellinger, B.; Marshall, P.
---- Kinetic and mechanistic studies of the reaction of hydroxyl radicals
---- with acetaldehyde over an extended temperature range
---- Symp. Int. Combust. Proc, 497 - 504, 1996 (CH2CHO+H2O)
---- 295 - 600 K, Transition State!.
CH3CHO +OH =CH3CO +H2O 2.300E+10 0.73 -4.6
CH3CHO +OH =CH2CHO +H2O 1.553E+06 2.20 4.18
---- CEC 94, k=(3.0E+12/0.0/49.9), (900-1200K, dlog k= +-0.7)
---- RAUL: Konnov, 1999
---- CH2CHO+H2O2, Borisov, A.A., Zamanskii, V.M., Konnov, A.A., and Skachkov, G.I
---- Sov. J. Chem. Phys., 1990, v.6, pp.748-755.
CH3CHO +HO2 =CH3CO +H2O2 3.100E+12 0.0 50.0
CH3CHO +HO2 =CH2CHO +H2O2 3.000E+13 0.0 62.7
---- S. MURIES .
---- CH3CHO +3CH2 =CH3CO +CH3 2.500E+12 0.0 15.9
---- S. MURIES SAYS WA 84...original k=(2.500E+12 0.0 15.9)
---- RAUL: NIST (experimental)
---- Bohland, T., Dobe, S., Temps, F., Wagner, H. Gg
---- Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons
---- in the temperature range 296 K - 707 K.
---- Ber. Bunsenges. Phys. Chem. 1985, v.89, p.1110
CH3CHO +3CH2 =CH3CO +CH3 1.660E+12 0.0 14.67
---- OK CEC 91
---- CH3CHO +CH3 =CH3CO +CH4 2.000E-06 5.64 10.3
---- CEC 94, k=(2.0E-06/5.60/10.3),(300-1250K, dlog k = +-0.3)
---- RAUL: Konnov 1999.
---- CH2CO+CH4. Berces, T. and Marta, F.
---- Reactions of methyl radicals with acetaldehyde and acetaldehyde-d1
---- II. BEBO calculations of the temperature dependence of the rate constants
---- Int. J. Chem. Kinet., 1976, v. 8, pp. 295-306.
CH3CHO +CH3 =CH3CO +CH4 2.050E-06 5.60 10.3
CH3CHO +CH3 =CH2CHO +CH4 1.580E-00 4.00 32.27
******************************************
**** 24. C2H5 REACTIONS
******************************************
---- CEC 94, k_inf=(3.97E09/1.28/5.40), (200-1100K, dlog k=+-0.3)
---- k_0(HE)=(4.71E18/0.00/3.16), (300- 800K, dlog k=+-0.3),1.35e19
---- k_0(N2)=(2.79E18/0.00/3.16), (300- 800K, dlog k=+-0.3),6.98e18
---- Fcent(HE,N2)=(0.76/40/1025/0) , (300- 800K, dFc = +- 0.1)
---- 3.970E+09 1.280 5.40
C2H4 +H +M(1) >C2H5 +M(1) 2.000E+09 1.280 5.40
LOW 6.980E+18 0.000 3.20
TROE 0.760 40.0 1025.0 0.0
---- CEC 94, k_inf=(8.20E13/0/166.86), (700-1100K, dlog k=+-0.3)
---- k_0(C2H6)=(1.02E18/0/139.68), (700- 900K, dlog k=+-0.3),3.41e17
---- Fcent(C2H6)=(0.75/97/1379/0) , (700-1100K, dFc = +- 0.1)
---- (*) TODA ESTA ESTA!!!!!
---- RAUL: Feng, Y., Niiranen, J.T., Bencsura, A., Knyazev, V.D., and Gutman, D
---- Weak collision effects in the reaction C2H5 = C2H4 + H
---- J. Phys. Chem., 1993, v.97, pp. 871-880.
C2H5 +M(1) >C2H4 +H +M(1) 8.200E+13 0.000 166.80
LOW 3.400E+17 0.000 139.60
TROE 0.750 97.0 1379.0 0.0
---- OK CEC 89
---- C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0
---- CEC 94, k = (3.61E+13/0/0), (300K-2000K, dlog k=+-0.3 at 300K rising to
---- +-0.7 at 2000K)
---- k_r=(3.01E+13/0/56.54), (1300-2500K, dlog k= +-0.6) 6!!
C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0
----
---- CEC 94, (300-2500K, dlog k=+-0.3 from 300K to 1000K,+-0.5 from 1000K-2500K)
---- k=(6.62E+13/0/0), k2/k= 0.17+-0.2 at 300k (de acuerdo con Tsang, 1986)
---- RAUL: Konnov, 1999
---- (global Berkeley, Konnov: 1.324E+14)
---- Rxn additional (3),
---- Slagle, I.R., Sarzynski, D., Gutman, D., Miller, J.A., and Melius, C.F
---- Kinetics of the reaction between oxygen atoms and ethyl radicals
---- J. Chem. Soc. Faraday Trans. 2 1988, v.84, p.491. .
C2H5 +O =CH3CHO +H 5.300E+13 0.0 0.0
C2H5 +O =CH2O +CH3 4.240E+13 0.0 0.0
C2H5 +O =C2H4 +OH 3.460E+13 0.0 0.0
---- CEC 94, k=(1.020E+10/0.0/-9.15), (600-1200K, dlog k = +-0.3)
---- RAUL: Atkinson, 1994.
---- Bozzelli, J.W.; Dean, A.M.
---- Chemical activation analysis of the reaction of C2H5 with O2
---- J. Phys. Chem. vol 97 p.3313. 1990 kcin=(2.562E+19/-2.77/8.27)
---- GRI 3.0 kcin=(8.400E+11/0/16.08)
---- C2H5 +O2 =C2H4 +HO2 8.400E+11 0.0 16.08
---- NIST 2000: Dobis, O.; Benson, S.W. Reaction of the ethyl radical with oxygen
---- at millitorr pressures at 243-368 K and a study of the Cl + HO2, ethyl + HO2, and HO2 + HO2 reactions
---- J. Am. Chem. Soc. vol.115 p.8798 - 8809 1993.
C2H5 +O2 =C2H4 +HO2 1.085E+07 0.0 -23.20
---- Bozelli, J.W.; Dean, A.M
---- Chemical activation analysis of the reaction of C2H5+O2
---- J. Phys. Chem, 1990, 94, p.3313
C2H5 +O2 =C2H5O +O 1.155E+13 -0.2 117.2
---- RAUL:Se incluyen en la parte de baja!
---- NIST: Atkinson, Baulch...et al.
---- J. Phys. Chem. Ref. Data 1997, vol.26, p.521 - 1011
---- NOTA: Konnov la pone dependiente d ela presion!!!! de Wagner (experimental!)
---- C2H5 +O2 =C2H5O2 4.690E+12 0.0 0.0
---- CEC 94, k=(1.14e+12/0/0), (300-800K, dlog k =+-0.4)
C2H5 +CH3 =C2H4 +CH4 1.140E+12 0.0 0.0
---- CEC 94, k=(1.450E+12/0.0/0.0),(300-1200, dlog k = +-0.4)
---- Incertainty:2.51
C2H5 +C2H5 =C2H4 +C2H6 1.400E+12 0.0 0.0
******************************************
**** 30B. C2H5O REACTIONS
******************************************
---- L BATT, INT. J. CHEM. KINET. 9, 977 (1979) NO REC CEC
---- C2H5O =CH3CHO +H 2.510E+14 0.0 97.0
---- HEI 298-450
---- RAUL: Heicklen, J.
---- The decomposition of alkyl nitrites and the reactions of alkoxyl radicals
---- Adv. Photochem, vol.14, p.177, 1988.
C2H5O =CH3CHO +H 2.000E+14 0.0 97.3
---- RAUL: Valores Experimentales: Caralp, F.; Devolder, P.; Fittschen, C.;
---- Gomez, N.; Hippler, H.; Mereau, R.; Rayez, M.T.; Striebel, F.; Viskolcz, B.;
---- The Thermal Unimolecular Decomposition Rate Constants of Ethoxy Radicals
---- Phys. Chem. Chem. Phys., vol.1, 2935 - 2944, 1999
---- kcin =(1.1x1013 (s-1) e(-70300 (J/mole)/RT)), (391, 491K, 60 Bar)
---- CEC 94, k=(8.000E+13/0/90.0), (300-600K, dlog k = +-1.0, est.)
---- Incertainty= 10
---- L Blatt,The Gas-Phase Decomposition of Alkoxy Radicals
---- Int. J. Chem. Kinet, vol. 11, p.977, 1979.
---- kcin =(1E+15*E(-90.628/RT) (+/-) 4.52 kJ/mol , (393, 433, 1 Bar)
C2H5O =CH2O +CH3 1.000E+15 0.0 90.6
---- S ZBARNIK, J HEIKLEN, REPORT AT THE 186TH AM. CHEM. SOC. NATL.
---- MEETING, WASHINGTON DC, 1983 NO REC CEC
---- C2H5O +O2 =CH3CHO +HO2 5.010E+12 0.0 16.7
---- CEC 94, k=(6.020E+10/0/6.9), (300-1000K, dlog k = +-0.3 rising to +-0.5 at 1000K)
---- RAUL: Atkinson, R: Atmospheric reactions of alkoxy and beta-hydroxyalkoxy radicals
---- Int. J. Chem. Kinet, vol.29. 1997. p.99-111
---- kcin = (5.99E+14/0.0/4.57) (298- 600K)
---- Intermedio entre Gut/1982 y Har 1990 parece mejor!
C2H5O +O2 =CH3CHO +HO2 6.000E+10 0.0 7.0
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
---- NO REC CEC
---- C2H5O +OH =CH3CHO +H2O 1.320E+12 0.0 0.0
---- Konnov 1998
---- Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C.
---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling
---- Combust.Sci. and Technol., 1994, v.102, pp.21-55.
C2H5O +OH =CH3CHO +H2O 1.000E+14 0.0 0.0
---- SAME AS FOR CH3O
---- C2H5O +H =CH3CHO +H2 1.800E+13 0.0 0.0
---- Konnov 1998
---- Igual al anterior
C2H5O +H =CH3CHO +H2 1.000E+14 0.0 0.0
---- Konnov 1998
---- Igual a los anteriores
C2H5O +O =CH3CHO +OH 1.210E+14 0.0 0.0
******************************************
**** 30C. CH3CHOH REACTIONS
******************************************
----
---- H H
---- | |
---- H--C--C--OH -> CH3CHOH
---- | |
---- H @
----
----
---- SAME AS FOR CH2OH, OK WA 84 NO REC CEC
---- CH3CHOH =CH3CHO +H 1.000E+14 0.0 105.0
---- RAUL:Natarajan, K.; Bhaskaran, K.A-
---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
---- kcin = (4.999E+13/0.0/91.459), Proc. Int. Symp. Shock Tubes Waves
---- vol 13, p.834. 1982 (1300K-1700K) (1.01-2.03Bar)
CH3CHOH =CH3CHO +H 4.999E+13 0.0 91.46
----
---- SAME AS FOR CH2OH, OK WA 84 NO REC CEC
---- CH3CHOH +H =CH3CHO +H2 3.000E+13 0.0 0.0
---- RAUL:Edelbuttel-Einhaus, J.; Hoyermann, K.; Rohde, G.; Seeba, J.
---- The detection of the hydroxyethyl radical by REMPI/mass-spectrometry and
---- the application to the study of the reactions CH3CHOH + O and CH3CHOH + H
---- Symp. Int. Combust. Proc, vol. 24, p.661-668, 1992
CH3CHOH +H =CH3CHO +H2 1.999E+13 0.0 0.0
----
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
CH3CHOH +OH =CH3CHO +H2O 1.510E+13 0.0 0.0
----
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
---- CH3CHOH +O =CH3CHO +OH 1.200E+14 0.0 0.0
---- koriginal=( 1.200E+14 0.0 0.0)
---- RAUL: NIST, 2000, Grotheer, H.; Riekert, G.; Walter, D.; Just, Th.
---- Reactions of hydroxymethyl and hydroxyethyl radicals with molecular and atomic oxygen
---- Symp. Int. Combust. Proc, vol 22, p.963, 1989
CH3CHOH +O =CH3CHO +OH 9.034E+13 0.0 0.0
----
---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976
---- CH3CHOH +O2 =CH3CHO +HO2 1.200E+13 0.0 0.0
---- koriginal=(1.200E+13 0.0 0.0)
---- RAUL: NIST, Natarajan, K.; Bhaskaran, K.A.
---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
---- kcin = (9.998E+11/0.0/23.28), Proc. Int. Symp. Shock Tubes Waves (1300-1700)
CH3CHOH +O2 =CH3CHO +HO2 9.998E+12 0.0 23.28
******************************************
**** 30D. CH2CH2OH REACTIONS
******************************************
---- BETA-DECOMP. ESTIMATED. NO REC CEC
---- Incluida en la parte de baja temperatura
---- CH2CH2OH =C2H4 +OH 1.000E+14 0.0 140.0
----
---- M BARTELS, K HOYERMANN, R SIEVERT, 19TH SYMP. COMB., 61, 1982
CH2CH2OH+H =CH3CHO +H2 5.000E+13 0.0 0.0
----
******************************************
**** 31. C2H5OH REACTIONS
******************************************
---- DECOMP. W TSANG, INT. J. CHEM. KINET. 8, 193, 1976
---- C2H5OH =CH3 +CH2OH 2.510E+16 0.0 353.0
---- Konnov 1998
C2H5OH =CH3 +CH2OH 3.100E+15 0.0 337.2
C2H5OH =C2H4 +H2O 1.000E+14 0.0 320.9
----
---- Konnov 1998
---- C2H5OH =C2H5 +OH 5.000E+16 0.0 381.6
----
---- Fagerstrom, K.; Lund, A.; Mahmoud, G.; Jodkowski, J.T.; Ratajczak, E.
---- Kinetics of the gas-phase reaction between ethyl and hydroxyl radicals. Chem. Phys. Lett. vol.208 p.321-327 1993.
---- (200-400K) (0.25-1Bar) kcin=(7.709E+13{+/-9.998E+12}/0.0/0.0) Experimental 8.708 6.709E+13
C2H5 +OH =C2H5OH 6.709E+13 0.0 0.0
----
---- R ATKINSON, INT. J. CHEM. KINET. 18, 555-68, 1986 NO REC CEC
C2H5OH +OH =CH3CHOH +H2O 5.250E+06 2.0 1.9
---- Natarajan, K.; Bhaskaran, K.A-
---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol
---- Proc. Int. Symp. Shock Tubes Waves. vol 13, p.834. 1982.
---- (1300K-1700K) (1.01-2.03Bar)
---- kcin=(2.999E13/0.0/24.943) [4.98x10-11 (cm3/molecule s) e-24943 (J/mole)/RT]
---- C2H5OH +OH =CH3CHOH +H2O 2.999E13 0.0 24.943
----
---- ATKINSON, 1986
---- Ref: Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C.
---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling
---- Combust.Sci. and Technol., 1994, v.102, pp.21-55
C2H5OH +OH =C2H5O +H2O 1.150E+06 2.0 3.8
C2H5OH +OH =CH2CH2OH+H2O 8.130E+06 2.0 2.5
----
---- Estimated:
---- C2H5OH +O =CH3CHOH +OH 7.940E+12 0.0 13.6
---- Herron, J.T. Evaluated chemical kinetic data for the reactions of atomic oxygen
---- O with saturated organic compounds in the gas phase
---- J. Phys. Chem. Ref. Data 1988, v.17, p.967.incer=1.5 (300-1000K0)
C2H5OH +O =CH3CHOH +OH 6.000E+05 2.46 7.73
----
---- HH GROTHEER, FL NESBITT, RB KLEMM, J.PHYS. CHEM. 90, 2512, 1986
C2H5OH +O =C2H5O +OH 4.790E+13 0.0 28.7
----
---- Estimated
---- C2H5OH +O =CH2CH2OH+OH 1.000E+14 0.0 31.3
---- RAUL: koriginal=(1.000E+14/0.0/31.3)
---- Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., Rusakov, S.A.,
---- and Skachkov, G.I. High-temperature pyrolysis of ethanol
---- Sov. J. Chem. Phys., 1991, v.8, pp.121-141
C2H5OH +O =CH2CH2OH+OH 2.000E+12 0.0 39.7
----
---- WK ADERS, HGG WAGNER, BER. BUNSENGES, PHYS. CHEM. 77, 712, 1973
---- NO REC CEC
---- kcin en la ref=(5.902E11/0/14.46)
C2H5OH +H =C2H5 +H2O 5.900E+11 0.0 14.4
----
---- kcin en la ref=(4.402E12/0/19.1)
C2H5OH +H =CH3CHOH +H2 4.400E+12 0.0 19.1
----
---- From Konnov: Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., Rusakov, S.A.,
---- and Skachkov, G.I. High-temperature pyrolysis of ethanol. Sov. J. Chem. Phys., 1991, v.8, pp.121-141.
---- kcin=(2.000E+12/0.0/39.71)
C2H5OH +H =CH2CH2OH+H2 2.000E+12 0.0 39.71
----
---- RAUL: Adicional, Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C
---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling
---- Combust.Sci. and Technol., 1994, v.102, pp.21-55.
C2H5OH +H =C2H5O +H2 1.760E+12 0.0 19.1
----
---- SAME AS FOR METHANOL
---- C2H5OH +HO2 =CH3CHOH +H2O2 6.300E+12 0.0 81.1
---- SAME AS FOR METHANOL NO REC CEC
---- k original=(6.300E+12 0.0 81.1)
---- RAUL: Konnov, 1999 Lit orig: Tan, Y., Dagaut, Ph.,.... 1994
C2H5OH +HO2 =CH3CHOH +H2O2 2.000E+13 0.0 71.1
----
---- Konnov, 1999 Lit Orig: Borisov, A.A....1991
C2H5OH +HO2 =CH2CH2OH+H2O2 1.000E+11 0.0 52.2
C2H5OH +HO2 =C2H5O +H2O2 1.000E+11 0.0 64.8
----
---- REACTION WITH CHO
C2H5OH +CHO =C2H5O +CH2O 6.500E+09 0.0 57.2
----
---- P GRAY, AA HEROD, TRANS. FARADAY SOC. 64, 1568, 1968 NO REC CEC
---- Methyl radical reactions with ethanol and deuterated ethanols
---- kliterat=(3.981E11/0/40.57) incer=1.41 (403-523K)
---- kcin_Volker=(2.040E+11/0.0/36.40)
C2H5OH +CH3 =CH3CHOH +CH4 2.040E+11 0.0 36.40
----
---- Konnov, 1999
---- koriginal_Volker=(2.040E+11 0.0 36.4)
---- Borisov, A.A....1991
C2H5OH +CH3 =CH2CH2OH+CH4 3.000E+00 4.0 43.8
----
---- P GRAY, AA HEROD, TRANS. FARADAY SOC. 64, 1568, 1968 NO REC CEC
---- Methyl radical reactions with ethanol and deuterated ethanols
---- kliterat=(7.950E10/0/39.32) incer=1.41 (403-523K)
C2H5OH +CH3 =C2H5O +CH4 7.490E+10 0.0 39.3
----
---- RAUL las siguientes 3 rxn no tienen referencia son iguales a Konnov!!!
---- SAME AS FOR METHANOL
C2H5OH +CH3O =CH3CHOH +CH3OH 2.000E+11 0.0 29.3
C2H5OH +CH2O =C2H5O +CH3O 1.530E+12 0.0 333.2
C2H5OH +C2H5O =C2H5OH +CH3CHOH 2.000E+11 0.0 29.3
----
---- RAUL: Rxn adicionales Konnov, 1999
C2H5OH +O2 =CH2CH2OH+HO2 4.000E+13 0.0 212.76
C2H5OH +O2 =CH3CHOH +HO2 4.000E+13 0.0 214.02
---- Tan, Y., Dagaut,...1994
C2H5OH +O2 =C2H5O +HO2 2.000E+13 0.0 234.0
----
******************************************
**** 25. C2H6 REACTIONS
******************************************
---- OK CEC 91
---- C2H6 +H =C2H5 +H2 1.440E+09 1.5 31.1
---- CEC 94, k_r=(3.07/3.6/35.33), (700-1200K,
---- dlog k = +-0.2 at 700K rising to 0.6 at 1200K)
---- kcin=( 1.550E+09/1.5/31.1)
---- C2H6 +H =C2H5 +H2 1.550E+09 1.5 31.1
----
---- Da muy buenos resultados con esta !!!
---- GRI 3.0 Cohen, N.R. (1991) Int. J. Chem. Kin. vol23, p683.
C2H6 +H =C2H5 +H2 1.150E+09 1.9 31.1
----
---- Esta reaccion da ERROR numerico
---- RAUL: NIST 2000. Back R. A. A search for a gas-phase free radical inversion displacement reaction at
---- a saturade carbon atom. Can. J. Chem. vol. 61. 96. 1983
---- C2H6 +H =CH4 +CH3 5.406E+04 0.0 48.6
----
---- RAUL: Mahmud, K.; Marshall, P.; Fontijn, A.
---- The reaction of O, atoms with ethane: An HTP kinetics study from 300 to 1270 K
---- J. Chem. Phys, vol.88, 1988, p. 2393 (experimental, 297-1297K)
---- Kcinetica=(1.391E09/(T/298)^6.5/1.147/)
---- C2H6+O=C2H5+OH (1.150E-07/6.5/1.147)
---- C2H6 +O =C2H5 +OH 1.150E-07 6.5 1.147
---- CEC 94, k=(1.0E+09/1.5/24.3),(300-1200K,dlog k= +-0.3 falling to +-0.15 at 1200K)
C2H6 +O =C2H5 +OH 0.900E+09 1.5 24.3
---- Miyoshi, A.; Ohmori, K.; Tsuchiya, K.; Matsui, H.Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes
---- C2H6 +O =C2H5 +OH 3.549E+06 2.4 24.3
----
---- Cohen, N. Int. J. Chem. Kinet. vol23. p397-417, 1991.
---- C2H6 +OH =C2H5 +H2O 3.984E+07 1.8 4.739
---- CEC 94, k=(7.23E+06/2.0/3.62),(250-2000K, dlog k = +-0.07 rising to +-0.15 at 2000K)
---- incertidumbre=1.41 (7.200E+06/2.0/3.6) (Multiplicado por 1.41= 1.015E+07)
C2H6 +OH =C2H5 +H2O 6.200E+06 2.0 3.6
---- Tully, F.P.; Droege, A.T.; Koszykowski, M.L.; Melius, C.F. Hydrogen-atom abstraction from alkanes by OH. 2. Ethane
---- J. Phys. Chem. vol.90 p.691 1986. (293-705K)(0.8 Bar) Experimental
---- C2H6 +OH =C2H5 +H2O 5.107E+06 2.06 3.57
----
---- OK CEC 89
---- C2H6 +HO2 =C2H5 +H2O2 1.700E+13 0.0 85.9
---- CEC 94, k=(1.325E+13/0/85.6),(500-1000K, dlog k= +-0.2 rising to +-0.3 at 1000K)
---- incertidumbre = 2 (1.330E+13/0.0/85.9)
---- multiplico por 1
C2H6 +HO2 =C2H5 +H2O2 1.333E+13 0.0 85.6
----
---- C2H6 +HO2 =C2H5 +H2O2 1.895E+13 0.0 81.2
----
---- C2H6 +HO2 =C2H5 +H2O2 1.698E+13 0.0 83.00
---- CEC 94, k=(6.0E+13/0/217.0),(500-2000K, dlog k = +-0.05 rising to +-0.1 at 2000K)
---- Uncertainty = 10 !!
---- Divido por 1
C2H6 +O2 =C2H5 +HO2 6.000E+13 0.0 217.0
---- RAUL: Bohland, T., Dobe, S., Temps, F., and Wagner, H
---- Gg.Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons
---- in the temperature range 296 K- 707 K. Ber. Bunsenges. Phys. Chem. 1985, v.89, p.1110.
---- kcin=(6.500E+12 exp(-33.06/RT))
---- 22ND SYMP 1988
C2H6 +3CH2 =C2H5 +CH3 2.200E+13 0.0 36.3
----
---- CEC 94, k=(1.51E-07/6/25.3),(300-1500K, dlog k = +-0.1 rising to +-0.2 at 1500K)
---- Uncertainty = 1.58 (1.500E-07/6.0/25.4) * 1.5 (2.370E-07)
---- C2H6 +CH3 =C2H5 +CH4 1.500E-07 6.0 25.3
----
---- Moller, W.; Mozzhukhin, E.; Wagner, H.Gg. High temperature reactions of CH3. 2. H-abstraction from alkanes
---- Ber. Bunsenges. Phys. Chem. vol.91. p660 1987. (1100-1400K) (0.4-0.93 Bar) Uncertainty=2.5 Absolute value measured directly!
---- kcin=(1.999E+13/0.0/56.54)
C2H6 +CH3 =C2H5 +CH4 0.999E+13 0.0 56.54
----
---- Tsang 1986 kcin=(0.5491/4.0/34.67) Uncertainty=3.0!!!
---- C2H6 +CH3 =C2H5 +CH4 5.491E-01 4.0 34.67
----
---- Additional reactions
---- CEC 94, k=(1.08E+14/0/-1.10), (200-700K, dlog k = +-1.0)
---- products: (C2H4+CH3),(C3H6+H)
---- RAUL, CEC, retomo valores de la bibliografia.
---- Experimental by: Berman, M.R.; Lin, M.C.
---- Chem. Phys, vol. 82. p.435. 1983
C2H6 +CH =C2H4 +CH3 1.080E+14 0.0 -1.1
---- RAUL: Decomposition
---- GRI3.0= Stewart, P.H., Rothem, T., and Golden, D.M.
---- (1988) 22d Symposium (International) on Combustion, p. 943
---- k0=(1.99E+41 T^(-7.08) exp(-27.943 KJ/mol /RT)
---- kinf= 5.21E+17 T^(-0.99) exp(-6.604 KJ/mol /RT)
---- Fcent = (1-0.842) exp(-T/125) + 0.842 exp(-T/2219) + exp(-6882/T)
C2H5 +H +M(3) =C2H6 +M(3) 5.420E+12 0.0 0.0
LOW 1.190E+27 -3.100 0.0
TROE 0.842 125.0 2219.0 6882.0
---- N2= 1.0; H2= 2.0; H2O= 6.0; CH4=2.0; CO=1.5; CO2=2.0; C2H6=3.0; AR=0.7
----
---- RAUL NIST 2000,Hidaka Y. Shiba S, Takuma H. Suga M. Thermal decomposition of ethane in shock waves
---- Int. Journal Chemi K. vol 17. p. 441 1985.
---- T=1200-1700K P=1.72-2.53
---- C2H6 +C2H3 =C2H4 +C2H5 1.499E+13 0.0 41.8
----
---- Zhang, H-X.; Back, M.H. Rate constants for abstraction of hydrogen from ethylene
---- by methyl and ethyl radicals over the temperature range 650-770K. Int. J. Chem. Kinet. vol 22. p.21.00 1990.
---- (650-770K)(0.27-0.53 Bar) Uncertainty=1.58.
---- kcin=(1.578E+11/0.0/69.192)
C2H4 +C2H5 =C2H6 +C2H3 1.578E+11 0.0 69.192
----
----
---- RAUL: NIST 2000. Tsang 1986.
---- Uncertainty= 3 kcin=(2.409E+11/0.0/29.68)
C2H6 +CH3O =CH3OH +C2H5 2.409E+11 0.0 29.68
----
---- Todas estas no cambian mucho los resultados finales !!!!
---- RAUL Tsang 1986
---- Uncertainty=3.0
---- Divido por 3
C2H6 +C2H =C2H2 +C2H5 1.200E+12 0.0 0.0
---- RAUL Tsang 1986
---- Uncertainty=3.0
---- Divido por 3
---- ACA
---- C2H6 +C2H2 =C2H3 +C2H5 3.211E+11 0.0 19.2
---- RAUL Tsang 1986
---- Uncertainty=5.0
---- Divido por 5
---- C2H6 +CH3CO =CH3CHO +C2H5 3.612E+03 2.75 73.3
---- RAUL Tsang 1986
---- Uncertainty=5.0
---- Divido por 5
C2H6 +CHO =CH2O +C2H5 9.376E+03 2.72 76.3
---- RAUL Tsang 1986
---- Uncertainty=3.0
---- Divido por 3
C2H6 +CH3O2 =CH3O2H +C2H5 9.836E+10 0.0 62.5
**********************************************************************
****
**** CE MECHANIMS
****
******************************************
**** 31. C3H3 REACTIONS
******************************************
---- Consumption of C3H3
---- Fuente Konnov, 1999 sin referencia
C3H3 +O >CO +C2H3 3.800E+13 0.0 0.0
C3H3 +O2 >HCCO +CH2O 6.000E+12 0.0 0.0
---- RAUL: Tan, Y., Dagaut, Ph.,... 1994....
---- k=(1.000E+13 0.0 0.0)
---- 89 MIL/BOW, (dlog k = 1.0)
C3H3 +OH =C3H2 +H2O 2.000E+13 0.0 0.0
---- RAUL: Nueva, Slagle, I.R. and Gutman, D.
---- Kinetics of the reaction of C3H3 with molecular oxygen from 293-900 K.
---- 21st Int. Symp. on Combustion, 1988, p.875.(500-900K) (0-0.1Bar)
---- konnov kcin=(3.010E+14 0.0 12.00)
C3H3 +O2 =CH2CO +CHO 3.010E+14 0.0 12.00
---- RAUL: Revizar, Quedan pendientes, Konnov 1999
---- C3H3+O>CO+C2H2+H k=(7.000E+13 0.0 0.0)
---- C3H3+O>C2H+HCO+H k=(7.000E+13 0.0 0.0)
---- Decomposition reactions: NIST, 2000
---- C3H3>C3H2+H k=(2.710E30/0/0)Deyerl, H.-J.; Fischer, I.; Chen, P
---- J. Chem. Phys. vol.111, p.3441-3448. 1999. Exp (298K, 1.5 Bar)
******************************************
**** 32. C3H4 REACTIONS
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57
******************************************
C3H4 +O =CH2O +C2H2 0.100E+13 0.0 0.0
C3H4 +O =CHO +C2H3 0.100E+13 0.0 0.0
C3H4 +OH =CH2O +C2H3 0.100E+13 0.0 0.0
C3H4 +OH =CHO +C2H4 0.100E+13 0.0 0.0
---- RAUL: NIST, Herbrechtsmeier, P.
---- Reactions of O (3P) Atoms with Unsaturated C3-Hydrocarbons
---- Combust. Inst. European Symp.vol1. pag 13, 1973
C3H4 +O =CO +C2H4 7.829E+12 0.0 -6.69
---- RAUL: NIST, Adusei, G.Y.; Blue, A.S.; Fontijn, A
---- The O(3P) methylacetylene reaction over wide temperature and pressure ranges
---- J. Phys. Chem. vol.100, 16921 - 16924, 1996.TS, 300-2500K, 0.1-0.7 Bar
C3H4 +O =OH +C3H3 3.434E+04 2.16 20.20
---- RAUL: Pendiente, Kannov, 1999,
---- C3H4+OH=H2O+C3H3 k=(2E07/0/4.18) Miller, Melius 1992 Combustion and Flame
******************************************
C3H4 +M(1) =H +C3H3 +M(1) 0.100E+18 0.0 293.0
C3H4 +H =CH3 +C2H2 0.200E+14 0.0 10.0
C3H4 +H =H2 +C3H3 0.100E+13 0.0 6.3
C3H4 +C2H =C2H2 +C3H3 0.100E+14 0.0 0.0
C3H4 +CH3 =C3H3 +CH4 0.200E+13 0.0 32.2
---- RAUL: Pendiente.
---- C3H4+H=CH3+C2H2, kcin=(1.987E11/(t/298)^2.5/4.18) NIST, Hidaka, 1989
---- C3H4+H=H2+C3H3, kcin=(2.000E+07/2.0/20.9) Konnov, 1999, from Marinov 1998
******************************************
**** 33. C3H5 Reactions
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57
******************************************
---- Raul= Revizar, usada por Konnov!!!. Tsang, 1992,
---- Pyrolysis of 1,7-octadiene and the kinetic and thermodynamic
---- stability of allyl and 4-pentenyl radicals
---- J. Phys. Chem, vol. 96. p.8378-8384, 1992
---- kcin=(1.078E11/(T/298 K)^0.84/250.266/)
---- Uncertainty=10 expe, (300-1200K) (2.03-7.09 bar)
---- CEC 94, CH2CCH2, k_inif.=(1.5E+11/0.84/249.84), (800-1500K, dlog k = +-0.3)
C3H5 =C3H4 +H 0.398E+14 0.0 293.1
---- CEC 94, k=(1.81E+13/0/0), (300-1000K, dlog k = +-0.5)
---- Tsang, 1991, Uncertainty=3
C3H5 +H =C3H4 +H2 1.810E+13 0.0 0.0
---- CEC 94, CH2CCH2, k=(1.02E+12/0/94.78), (600-1200K, dlog k=+-0.3 at 600K
---- rising to +-0.5 at 1200K)
C3H5 +O2 =C3H4 +HO2 1.000E+12 0.0 94.7
---- additional reactions
---- CEC 94, k=(6.02E+12/0/0), (300-1000K, dlog k = +-0.5)
---- Tsang, 1991, Uncertainty=3
C3H5 +OH =C3H4 +H2O 6.000E+12 0.0 0.00
---- CEC 94, k_r=(1.93E+12/0/163.79), product: CH2=CHCH2
---- (600-1000K, dlog k=+-0.3 at 800K r. to +-0.5 at 1000K and 600K)
C3H6 +O2 =C3H5 +HO2 1.900E+12 0.0 163.80
---- CEC 94, k=(2.11E+11/0/0), (500-1200K, dlog k = +-0.5)
C3H5 +CH3 =C3H4 +CH4 2.100E+11 0.0 0.00
---- CEC 94, product: CH2CCH2, k=(6.02E+10/0/-1.10), (300-1000K, dlog k= +-0.7)
C3H5 +C3H5 =C3H6 +C3H4 6.020E+10 0.0 -1.10
---- CEC 94, product: CH3CH=CH, k=(6.02E+11/0/32.42), (300-600K, dlog k= +-0.5)
CH3 +C2H2 =C3H5 6.000E+11 0.0 32.40
---- RAUL: CEC 94, Tsang, 1991.
---- product=CH2=C=CH2 k=(1.6E-12/0/66) (500-1200K, dlog k= +-0.3)
C3H5 +C2H5 =C3H4 +C2H6 9.636E+11 0.0 0.548
---- RAUL: CEC 94, Tsang, 1991.
---- k=(4.3E-12/0/66) (500-1200K, dlog k= +-0.4)
C3H5 +C2H5 =C3H6 +C2H4 2.589E+12 0.0 0.548
******************************************
**** 34. C3H6 Reactions
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57
******************************************
---- Decomposition
---- RAUL: Hidaka, Y.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H.
---- Shock tube and modeling study of propene pyrolysis
---- Int. J. Chem. Kinet, vol.24, p.761 - 780, 1992
---- 1200-1800K
C3H6 =C2H2 +CH4 2.108E+12 0.0 292.67
---- WJ Pitz, CK Westbrook, WM Proscia, FL Dryer, 22nd Symp Int Comb
---- 831-43, 1984
---- kcin=(3.150E+15/0.0/359.0)
---- C3H6 =C2H3 +CH3 3.150E+15 0.0 359.0
---- NIST Fahr, A.; Laufer, A.; Klein, R.; Braun, W.
---- Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms
---- J. Phys. Chem. vol. 95. p.3218 - 3224. 1991
---- 0.13 Bar 298K. Experimental!!! kcin=(7.220E13/0.0/0.0)
---- 91TSA, k=(1.1E+21/-1.2/408.856), (300-2500, delta k=3.0)
C3H6 =C2H3 +CH3 1.100E+21 -1.2 408.8
---- RAUL: Barbe, P.; Martin, R.; Perrin, D.; Scacchi, G
---- Kinetics and modeling of the thermal reaction of propene at 800 K.
---- Part I. Pure propene. Int. J. Chem. Kinet, vol 28. pag. 829-847. 1996
---- (762-811K) (0.04-0.27 Bar)
C3H6 =C3H4 +H2 3.017E+12 0.0 296.82
---- CEC 94, k_r=(k_a_inf.+k_b)=(1.69E+14/0/0), (300-1000K, +-0.2 at 300K
---- rising to +-0.5 at 1000K), k_a=(C3H6), k_b=(C2H3+CH3)
C3H6 =C3H5 +H 1.000E+13 0.0 326.0
---- Reaction with H
---- CEC 94, k=(1.08E+05/2.4/79.40), attention welche Richtung
---- (300-1100K, dlog k = +-0.7 at 300K reducing to +-0.3 at 1100K)
---- (1.96) H +C3H6 =C3H5 +H2 0.500E+13 0.0 6.3
---- Loser, U.; Scherzer, K.; Weber, K.
---- Abschatzung kinetischer daten fur H-transferreaktionen mit hilfe der, bond strength-bond length (BSBL) "Methode"
---- Z. Phys. Chem. (Leipzig). vol.270. p237. 1989. kcin=(6.444E+11/0.0/18.6) Theorical!!
---- Tsang 1992 kcin=(1.701E+05/2.5/10.39)
---- (2.03) H +C3H6 =C3H5 +H2 1.701E+05 2.5 10.39
---- Original:
H +C3H6 =C3H5 +H2 6.444E+11 0.0 18.60
----
---- NIST 2000 Hidaka, Y.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H.
---- Shock tube and modeling study of propene pyrolysis
---- Int. J. Chem. Kinet. vol 24. p.761-780 1992 (1200-1800K)
H +C3H6 =C2H4 +CH3 2.610E+08 1.5 8.398
---- Reaction with O
C3H6 +O =C2H4 +CH2O 5.900E+13 0.0 21.0
---- 91 TSA, k=(1.21E+11/0.7/37.49), (300-2500K, delta=3)
C3H6 +O =C2H5 +CHO 3.600E+12 0.0 0.0
C3H6 +O =CH3 +CH3CO 5.000E+12 0.0 2.5
---- Tsang 1988
C3H6 +O =C3H5 +OH 1.741E+11 0.7 24.61
---- Reaction with OH
---- RAUL: Tan, Y., Dagaut...1994
---- kcin=(8.000E+12 ) No tengo mas sugerencias !
---- C3H6 +OH =C2H5 +CH2O 7.900E+12 0.0 0.0
---- Kcin_origi=(5.100E+12)
---- RAUL: Tan, Y., Dagaut...1994
---- kcin=(3.400E+11)
C3H6 +OH =CH3 +CH3CHO 3.400E+11 0.0 0.0
---- RAUL: Original, kcin=(4.000E+12 0.0 0.0)
---- Baldwin, R.R.; Hisham, M.W.M.; Walker, R.W. kcin=(7.588E+12)
---- Tsang, 1991 (unicertainty=1.2) kcin=(3.119E+06/2.0/1.247)
C3H6 +OH =C3H5 +H2O 2.599E+06 2.0 1.247
---- C3H6 +OH =C3H5 +H2O 4.000E+12 0.0 0.0
---- C3H6 +OH =C3H5 +H2O 7.588E+12 0.0 0.0
---- REACTION WITH MISC.
---- CEC 94, k_r=(3.97E+01/3.4/97.02), (300-1200K, dlog k = +-0.4)
---- Literatura Original :
---- CH3 +C3H6 =CH4 +C3H5 8.910E+08 0.0 35.6
---- CH4 +C3H5 =CH3 +C3H6 3.970E+01 3.4 97.02
---- Kinsman, A.C.; Roscoe, J.M. A kinetic analysis of the photolysis of mixtures of acetone and propylene
---- Int. J. Chem. Kinet. vol.26. p.191 - 200. 1994.(296-770K)
---- 1.396E+11 0.0 36.50
CH3 +C3H6 =CH4 +C3H5 1.396E+11 0.0 36.50
----
---- CEC 94, k_r=(2.35E+02/3.3/83.06), (300-1200K, dlog k = +-0.4)
C3H6 +C2H5 =C3H5 +C2H6 1.000E+09 0.0 38.5
---- Tsang Uncertainty = 5.0
---- C3H5 +H2O2 =C3H6 +HO2 3.912E+05 2.05 56.8
******************************************
**** 35a. n-C3H7 Reactions
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57
******************************************
---- Decomposition
----
---- Mintz, K.J.; Le Roy, D.J. Kinetics of radical reactions in sodium diffusion flames
---- Can. J. Chem. vol.56 p.941 1978. Experimental: 609 - 648 K 0.03 Bar.
---- kcin=(5.040E+12/0.0/116.4)
---- N-C3H7 =CH3 +C2H4 5.040E+12 0.0 116.4
----
---- kcin_orig=(0.960E+14/0.0/129.8)
---- N-C3H7 =CH3 +C2H4 9.600E+13 0.0 129.8
----
---- Bencsura, A.; Knyazev, V.D.; Xing, S-B.; Slagle, I.R.; Gutman, D.
---- kcin=(1.228E+13/-0.1/126.4)
---- N-C3H7 =CH3 +C2H4 1.228E+14 0.0 126.4
----
---- 88 TSA, k=(1.26E+13/0/127.08), (300-2500K, delta=1.2)
---- / 1.2 (1.260E+13)
N-C3H7 =CH3 +C2H4 1.050E+13 0.0 127.08
----
---- GRI 3.0 Con la anterior literatura desarrolla: M( 6)
---- CH3 +C2H4 +M( 6) =N-C3H7 +M( 6) 2.550E+06 1.60 23.820
---- LOW 3.000E+63 -14.6 75.950
---- TROE 0.1874 277.0 8748 7891.0
----
---- ko = 3.00E+63 T^(-14.60) exp( - 18170 cal/mol /RT) cm6/mol^2/s
---- kinf = 2.55E+06 T^1.60 exp(- 5700 cal/mol /RT) cm3/mol/s
---- Fcent = (1-0.1874) exp(- T / 277) + 0.1874 exp(- T / 8748) + exp(- 7891 / T)
---- N2 1.0
---- H2 2.0
---- H2O 6.0
---- CH4 2.0
---- CO 1.5
---- CO2 2.0
---- C2H6 3.0
---- AR 0.7
----
---- 84 WAR, k=(1.0E+14/0/156.0), (500-1000K, delta=3.16)
---- N-C3H7 =H +C3H6 1.250E+14 0.0 154.9
---- N-C3H7 =H +C3H6 1.000E+14 0.0 156.0
---- Mintz, K.J.; Le Roy, D.J.
---- Kinetics of radical reactions in sodium diffusion flames Can. J. Chem. vol.56 p.941. 1978
---- (567 - 609) K (0 - 0.02 ) Bar Experimental kcin=(1.110E+11/0.0/112.2)
---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions
---- J. Phys. Chem. vol89. p.4600. 1985. kcin=(1.260E+13/0.0/161.30)
N-C3H7 =H +C3H6 1.260E+13 0.0 161.3
----
---- Tsang 1989
---- Uncertainty = 2.0
N-C3H7 +H =C3H6 +H2 1.813E+12 0.0 0.0
---- Uncertainty = 3.0
N-C3H7 +OH =C3H6 +H2O 2.409E+13 0.0 0.0
----
---- NIST 2000 : Slagle I.R.; Park, J.-Y.; Gutman, D.
---- Experimental investigation of the kinetics and mechanism of the reaction of n-propyl radicals with molecular oxygen
---- from 297 to 635 K. Symp. Int. Combust. Proc. vol 20. p.733. 1985.
---- kcin=(5.99E-14/(+,- 2.99E-14 cm3 molecule s )
---- kcin=(3.6077E+10)
---- Reaction with O2
---- koriginal_=(0.100E+13/0.0/20.9)
---- M. Cathonnet J.C. Boettner and H James Experimantal Study and numrical Modeling of high temperature oxidation of
---- propane and n-butane. 18 Symposium 1981. p.903. kcin=(0.100E+13/0.0/24.24).
---- N-C3H7 +O2 =C3H6 +HO2 0.100E+13 0.0 20.9
---- Slagle, I.R.; Park, J.-Y.; Gutman, D. Symp. Int. Combust. Proc.20. p.733 1985 Experimental!
---- N-C3H7 +O2 =C3H6 +HO2 3.607E+10 0.0 0.0
---- Tsang
N-C3H7 +O2 =C3H6 +HO2 9.034E+10 0.0 0.0
---- NIST 2000: Baker, R.R.; Baldwin, R.R.; Walker, R.W.
---- The Use of the H2 + O2 Reaction in Determining the Velocity Constants
---- of Elementary Reactions in Hydrocarbon Oxidation. Symp. Int. Combust. Proc.
---- vol. 13, p.291. 1971. Uncertainty=1.38. 753K.
---- ****No se producen cambios al incluirala****
N-C3H7 +O2 =C2H5CHO +OH 1.102E+08 0.0 0.0
---- NIST 2000: Tsang 1986
---- Uncertainty = 3.0
N-C3H7 +CH2OH =CH3OH +C3H6 4.818E+11 0.0 0.0
---- x 3.0 (1.210E+12)
N-C3H7 +C2H3 =C2H4 +C3H6 3.630E+12 0.0 0.0
---- x 3.0 ( 0.253E+00)
N-C3H7 +C2H6 =C2H5 +C3H8 0.759E+00 3.82 37.8
---- NIST 2000: Tsang, 1988
---- Uncertainty= 1.4
N-C3H7 +C2H5 =C2H4 +C3H8 1.150E+12 0.0 0.0
---- x 1.4 (1.452E+12)
N-C3H7 +C2H5 =C2H6 +C3H6 2.033E+12 0.0 0.0
---- RAUL: Tsang, 1988 Incert=1.7
---- N-C3H7+CH3->CH4+C3H6
---- k=(3.07E-12/(T/298)^-0.32/0) kcin=(1.144E+13/-0.32/0.0) x1.7 = 1.944
N-C3H7 +CH3 =CH4 +C3H6 1.944E+13 -0.32 0.0
N-C3H7 +1CH2 =CH3 +C3H6 1.812E+12 0.00 0.0
---- Uncertainty=3.0
---- x 3.0 (6.023E+12)
N-C3H7 +C2H =C2H2 +C3H6 1.806E+13 0.00 0.0
---- NIST Thynne, J.C.J. Reactions of alkyl radicals. Part 2.-Methyl radical
---- photosensitized decomposition of n-propyl and isopropyl formates
---- Trans. Faraday Soc. vol58. p. 1394. 1962. (347-455K) (0.07-0.17Bar)
---- No se producen cambios al incluirala ****
N-C3H7 +N-C3H7 =C3H6 +C3H8 1.409E+13 0.0 0.0
******************************************
**** 35b. i-C3H7 Reactions
**** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57
******************************************
---- Decomposition
---- Originial kcin=( 0.630E+14 0.0 154.5)
---- Konnov 1999: kcin=(5.704E+09/1.16/3.653) (H+C3H6->I-C3H7) !!!!
---- Seakins,P.W., Robertson,S.H., Pilling,M.J., Slagle,I.R., Gmurczyk,G.W., Bencsura,A., Gutman,D., and Tsang,W. Kinetics
---- of the unimolecular decomposition of iso-C3H7: weak collision effects in helium, argon, and nitrogen. J. Phys. Chem.
---- 1993, v.97, pp.4450-4458.kcin=(3.912E+07/1.83/147.99)
---- 2.03 I-C3H7 =H +C3H6 3.912E+07 1.83 147.9
---- 2.19 I-C3H7 =H +C3H6 6.300E+13 0.0 154.500
---- 2.31
H +C3H6 =I-C3H7 5.704E+09 1.16 3.653
----
---- kcin_ori=(0.200E+11/0.0/123.5)
---- Konar R.S.; Marshall, R.M.; Purnell, J.H. kcin=(1.000E+12/0.0/144.67)
---- Initiation of isobutane pyrolysis. Trans. Faraday Soc. vol 64. p405-413 1968 (experimental)
---- (713-814K) (0.07-0.2 Bar)
I-C3H7 =CH3 +C2H4 0.200E+11 0.0 123.5
---- Reaction with O2
---- Konnov 1999:
---- Gulati, S.K. and Walker, R.W. Arrhenius parameters for the reaction i-C3H7 + O2 -> C3H6 + HO2. J. Chem. Soc. Faraday
---- Trans. 2 1988, v.84, p.401.
---- kcin=(2.754E10/0/-8.9911)
---- CEC 94, k=(1.990E+10/0/-10.73), (600-800K, dlog k = +-0.5)
---- 2.317 I-C3H7 +O2 =C3H6 +HO2 0.100E+13 0.0 20.9
---- 2.317 I-C3H7 +O2 =C3H6 +HO2 2.754E+10 0.0 -8.99
---- x 1.3
I-C3H7 +O2 =C3H6 +HO2 2.587E+10 0.0 -10.73
---- NIST 2000: Tsang, 1988
---- Uncertainty= 1.8
---- kcin_orig=(1.844E+13/-0.35/0.0)
I-C3H7 +C2H5 =C2H4 +C3H8 1.024E+13-0.35 0.0
---- x 1.8
I-C3H7 +C2H5 =C2H6 +C3H6 4.140E+13-0.35 0.0
---- NIST 2000: Tsang 1986
---- Uncertainty = 3.0
---- x 3.0 (0.843E+00) 2.529E+00 36.5
I-C3H7 +C2H6 =C2H5 +C3H8 2.529E+00 4.2 35.5
---- Da error numerico C2H5 +C3H8 =I-C3H7 +C2H6 1.207E+00 3.4 31.2
---- I-C3H7 +C2H6 =C2H5 +C3H8 9.998E+10 0.0 51.04
---- RAUL: Rexizar: Tsang, 1988 Incer= 1.5
---- I-C3H7+CH3->CH4+C3H6
---- k=(4.529E12/(T/298)^0.68/0)
I-C3H7 +1CH2 =CH3 +C3H6 5.010E+13 0.0 0.0
I-C3H7 +CH3 =CH4 +C3H6 9.409E+10 -0.68 0.0
---- RAUL: NIST 2000 Tsang 1988
---- Uncertainty= 5.0
I-C3H7 +CH2OH =CH3OH +C3H6 2.891E+12 0.0 0.0
---- RAUL: NIST 2000 Tsang 1988
---- Uncertainty= 10.0
I-C3H7 +I-C3H7 =C3H8 +C3H6 2.115E+14 -0.70 0.0
I-C3H7 +N-C3H7 =C3H8 +C3H6 5.131E+13 -0.35 0.0
******************************************
******************************************
**** 39. C3H8 Reactions
******************************************
---- CEC 94, k_inf=(1.10E17/0/353.10), (700-2000K, dlog k=+-0.3) Factor=2
---- k_0(AR)=(7.83E18/0/271.87), (700-2000K, dlog k=+-0.5), Factor=3.16 7.530E+18
---- Fcent(AR)=(0.76/1946/38/0) , (700-2000K, dFc = +- 0.2) Factor=1.58
C3H8 +M(1) =CH3 +C2H5 +M(1) 0.500E+17 0.000 352.80
LOW 2.830E+18 0.000 271.87
TROE 0.760 1946.0 38.0 0.0
---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions
---- J. Phys. Chem vol.89. p.4600. 1985.
---- kcin_normal=(1.58E16/0.0/408.241)
---- kcin_iso=(6.31E+15/0.0/396.600)
C3H8 =H +N-C3H7 1.580E+16 0.0 408.24
C3H8 =H +I-C3H7 6.310E+15 0.0 396.6
----
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200
---- H +C3H8 =H2 +N-C3H7 1.300E+14 0.0 40.6
----
---- Hidaka, Y.; Oki, T.; Kawano, H. Thermal decomposition of propane in shock waves. Int. J. Chem. Kinet
---- vol.21 p.689. 1989. ( 1.52 - 2.64 Bar)( 1100 - 1450 K) (Theorical value)
---- kcin=(9.275E+13/0.0/33.507)
---- H +C3H8 =H2 +N-C3H7 1.700E+14 0.0 30.507
---- H +C3H8 =H2 +N-C3H7 9.275E+13 0.0 33.507
----
---- Tsang 1988 kcin=(1.336E+06/2.54/28.24) Uncertainty=3.0
---- H +C3H8 =H2 +N-C3H7 1.446E+06 2.54 28.24
---- Baldwin, R.F.; Walker, R.W. 1979 Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals +
---- Alkanes. J. Chem. Soc. Faraday Trans. 1: vol. 75. p.140. 1979.
H +C3H8 =H2 +N-C3H7 1.319E+14 0.0 39.24
----
---- CEC 94, k=(7.83E+00/3.28/36.25), (300-1200K, dlog k = +-0.5)
H2 +I-C3H7 =H +C3H8 2.474E+01 3.28 36.25
---- Tsang 1988 kcin=(1.305E+06/2.4/18.708). Error numerico
---- Hidaka, Y.; Oki, T.; Kawano, H
---- Thermal decomposition of propane in shock waves
---- Int. J. Chem. Kinet. vol 21. 689 1989. kcin=(3.101E+13/0.0/33.50)i
---- (1100-1450)K ; (1.52-2.64)Bar
---- NIST 2000: Baldwin, R.F.; Walker, R.W.
---- Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + Alkanes
---- J. Chem. Soc. Faraday Trans. 1: vol 75. p 140 1979. (753-773K)
---- kcin=(9.817E+13/0.0/33.25)
---- H +C3H8 =H2 +I-C3H7 1.000E+14 0.0 34.9
----
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200
---- C3H8 +O =N-C3H7 +OH 3.000E+13 0.0 24.1
---- C3H8 +O =I-C3H7 +OH 2.600E+13 0.0 18.7
---- Cohen 1986.
---- kcin_normal=(3.715E+06/2.4/23.03)
---- kcin_iso=(5.500E+05/2.5/13.14)
---- C3H8 +O =N-C3H7 +OH 3.715E+06 2.4 23.03
---- C3H8 +O =I-C3H7 +OH 5.500E+05 2.5 13.14
---- Tsang 1988
---- kcin_normal=(1.930E+05/2.68/15.548)
---- kcin_iso=(4.774E+05/2.71/8.813)
C3H8 +O =N-C3H7 +OH 1.930E+05 2.68 15.548
C3H8 +O =I-C3H7 +OH 4.774E+05 2.71 8.813
----
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200
---- kcin=(3.700E+12/0.0/6.9)
---- C3H8 +OH =N-C3H7 +H2O 3.700E+12 0.0 6.90
---- NIST Hu, W-P.; Rossi, I.; Corchado, J.C.; Truhlar, D.G.
---- Molecular modeling of combustion kinetics. The abstraction of primary and secondary hydrogens by hydroxyl radical
---- J. Phys. Chem. A: vol 101 p.6911 - 6921. 1997 kcin=(2.282E+12/0.0/10.89) (295-854K) TST
C3H8 +OH =N-C3H7 +H2O 2.280E+12 0.0 10.89
---- NIST 2000: Cohen N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH +
---- alkane reactions Int. J. Chem. Kinet. vol 23. p. 397 - 417. 1991.
---- kcin=(3.16E+07/1.8/3.908)
---- C3H8 +OH =N-C3H7 +H2O 3.160E+07 1.8 3.908
----
---- Atkinson,R.Estimations of OH radical rate constants from H-atom abstraction from C-H and O-H bonds over the temperature
---- range 250-1000K. Int. J. Chem. Kinet. vol.18, p.555, 1986
---- C3H8 +OH =N-C3H7 +H2O 5.391E+06 2.0 1.887
-----
---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200
---- kcin=(2.800E+12/0.0/3.6)
C3H8 +OH =I-C3H7 +H2O 2.800E+12 0.0 3.600
---- NIST 2000 Cohen 1991 kcin=(7.060E+06/1.9/0.664)
---- NIST Hu, W-P.; Rossi, I.; Corchado, J.C.; Truhlar, D.G. kcin=(5.282E+12/0.0/8.156)
---- Atkinson, 1986 kcin=( 2.604E+06/2.0/1.937)
---- C3H8 +OH =I-C3H7 +H2O 2.604E+06 2.0 1.937
----
---- RAUL: Tsang, 1988 Reaccion directa
---- kcin normal=(4.76E04/2.6/68.92)
---- kcin iso=(9.64E03/2.6/58.20)
C3H8 +HO2 =N-C3H7 +H2O2 4.760E+03 2.6 68.92
C3H8 +HO2 =I-C3H7 +H2O2 9.640E+03 2.6 58.20
----
---- C3H8 +HO2 =N-C3H7 +H2O2 1.140E+13 0.0 81.2
---- N-C3H7 +H2O2 >C3H8 +HO2 0.233E+13 0.0 41.1
---- C3H8 +HO2 =I-C3H7 +H2O2 3.400E+12 0.0 71.2
---- I-C3H7 +H2O2 >C3H8 +HO2 0.416E+12 0.0 31.1
----
---- OK WA 84
---- CH3 +C3H8 >CH4 +N-C3H7 0.400E+12 0.0 39.8
---- CH4 +N-C3H7 >CH3 +C3H8 0.312E+13 0.0 68.9
---- Tsang kcin=(0.903E+00/3.96/29.93) Uncertainty= 1.5
---- Cuando se utiliza 1.13 cae el c3h8 y aumenta el ch4
---- CH3 +C3H8 =CH4 +N-C3H7 0.903E+00 3.96 29.93
---- NIST 2000: Mintz, K.J.; Le Roy, D.J.
---- Kinetics of radical reactions in sodium diffusion flames
---- Can. J. Chem. vol. 56. p. 941. 1978. kcin=(4.523E+13/0.0/62.44)
CH3 +C3H8 =CH4 +N-C3H7 4.523E+13 0.00 62.44
---- OK WA 84
---- CH3 +C3H8 >CH4 +I-C3H7 0.130E+13 0.0 48.6
---- CH4 +I-C3H7 >CH3 +C3H8 0.101E+14 0.0 77.7
---- Tsang kcin=(1.506E+00/3.46/22.95) Uncertainty = 1.5
---- Walker R.W. "reaction Kinetics" vol 1. p.161 S.P.R. Chemical Society 1975.
---- kcin-(6.600E+11/0.0/42.218)
---- Hidaka, Y.; Oki, T.; Kawano, H. Thermal decomposition of propane in shock waves
---- Int. J. Chem. Kinet.. vol 21. p. 689. 1989. kcin=(1.198E+12/0.0/43.07)
---- (1100 - 1450 K) (1.52 - 2.64 Bar) Buen camino !!!
CH3 +C3H8 =CH4 +I-C3H7 2.259E+00 3.46 22.95
---- CH3 +C3H8 =CH4 +I-C3H7 1.198E+12 0.0 42.07
----
---- OK WA 84.
C3H8 +O2 >N-C3H7 +HO2 2.520E+13 0.0 205.2
N-C3H7 +HO2 >C3H8 +O2 0.208E+13 0.0 0.0
---- C3H8 +O2 =N-C3H7 +HO2 3.969E+13 0.0 212.85
C3H8 +O2 >I-C3H7 +HO2 2.000E+13 0.0 199.3
I-C3H7 +HO2 >C3H8 +O2 0.208E+13 0.0 0.0
---- C3H8 +O2 =I-C3H7 +HO2 3.969E+13 0.0 199.5
----
---- 22ND SYMP
C3H8 +CH3O >N-C3H7 +CH3OH 0.300E+12 0.0 29.3
N-C3H7 +CH3OH >C3H8 +CH3O 0.122E+11 0.0 38.5
C3H8 +CH3O >I-C3H7 +CH3OH 0.300E+12 0.0 29.3
I-C3H7 +CH3OH >C3H8 +CH3O 0.122E+11 0.0 38.5
----
---- RAUL: Tsang, 1988
---- Uncertainty = 3
C3H8 +CHO =N-C3H7 +CH2O 2.046E+05 2.5 77.16
C3H8 +CHO =I-C3H7 +CH2O 1.085E+07 1.9 71.17
----
C3H8 +3CH2 =N-C3H7 +CH3 0.903E+00 3.65 29.93
C3H8 +3CH2 =I-C3H7 +CH3 1.506E+00 3.46 31.26
----
C3H8 +CH3CO =N-C3H7 +CH3CHO 4.200E+04 2.60 73.91
C3H8 +CH3CO =I-C3H7 +CH3CHO 5.303E+06 2.00 67.93
----
C3H8 +CH3O2 =N-C3H7 +CH3O2H 6.023E+12 0.0 81.06
C3H8 +CH3O2 =I-C3H7 +CH3O2H 1.987E+12 0.0 71.33
---- Uncertainty = 5.0
C3H8 +CH2OH =N-C3H7 +CH3OH 1.985E+02 2.95 58.41
C3H8 +CH2OH =I-C3H7 +CH3OH 6.021E+01 2.95 50.13
----
----
---- Tsang 1991
C3H8 +C3H5 =C3H6 +I-C3H7 7.869E+01 3.3 75.99
C3H8 +C3H5 =C3H6 +N-C3H7 2.352E+02 3.3 83.09
---- Loser, U.; Scherzer, K.; Weber, K.
---- Abschatzung kinetischer daten fur H-transferreaktionen mit hilfe der, bond strength-bond length (BSBL) "Methode"
---- Z. Phys. Chem. (Leipzig) vol. 270 p.237 1989 (790 - 810k) kcin=(7.227E+11/0.0/69.17)
---- Consumen C3H6 !!!!
---- C3H8 +C3H5 =C3H6 +N-C3H7 7.227E+11 0.0 69.17
---- C3H8 +C3H5 =C3H6 +I-C3H7 3.469E+11 0.0 56.20
******************************
**** *
**** 4. C4 MECHANISM *
**** *
******************************
****
******************************************
**** 40. C4H2 Reactions
******************************************
---- additional reactions
---- 86MIT/NAV, (210-423K,D,1.0)
C4H2 +O =C3H2 +CO 7.890E+12 0.0 5.64
---- 84PER, (296-688K,D/U,0.3)
C4H2 +OH =C3H2 +CHO 6.680E+12 0.0 -1.71
******************************************
**** 40. C4H6 Reactions
**** A CHAKIR, M CATHONET, JC BOETER, F GAILLARD, COMBUST. SCI. & TECH.
**** 1989, VOL. 65, PP 207-230
******************************************
---- Decomposition
C4H6 =C2H3 +C2H3 0.403E+20 -1.0 411.0
---- REACTION WITH H
---- (*)C2H3 +C2H4 =C4H6 +H 0.100E+12 0.0 30.5
----
---- 2003
---- kcin=(1.300E-13/0/0) -> kcin=(7.830E+10/0/0)
---- (+,-) 10 !!!!
C2H4 +C2H3 =C4H6 +H 7.830E+10 0.0 0.000
----
---- Reaction with O
C4H6 +O =C2H4 +CH2CO 0.100E+13 0.0 0.0
C4H6 +O =CH2O +C3H4 0.100E+13 0.0 0.0
---- Reaction with OH
C4H6 +OH =C2H5 +CH2CO 0.100E+13 0.0 0.0
C4H6 +OH =CH2O +C3H5 0.200E+13 0.0 0.0
C4H6 +OH =C2H3 +CH3CHO 0.500E+13 0.0 0.0
---- RAUL: Adicionales, NIST (Butino, 1-3 Butadieno)
---- Butino -> CH3+C3H3 Dean, A.M.; J. Phys. Chem.,vol.89, p.4600, 1985
---- kcin=(3.017E09/0/316.781) (300-2500K)
---- 1-3 -> C2H4+C2H2 Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Oshita, H.; Kawano, H.
---- Thermal isomerization and decomposition of 2-butyne in shock waves
---- J. Phys. Chem, vol. 97, p.10977 - 10983, 1993 (1100 - 1600K)
---- kcin=(6.023E09/0/313.456)
******************************************
**** 41. C4H7 Reactions
**** OK CATHONET 89
******************************************
---- Decomposition
C4H7 =C4H6 +H 0.120E+15 0.0 206.4
C4H7 =C2H4 +C2H3 0.100E+12 0.0 154.9
---- Reaction with H
H +C4H7 =C4H6 +H2 0.316E+13 0.0 0.0
---- Reaction with O2
C4H7 +O2 =C4H6 +HO2 0.100E+12 0.0 0.0
---- REACTION WITH ITSELF
C4H7 +C4H7 =C4H6 +1-C4H8 3.160E+12 0.0 0.0
---- Cathonnet 1981
C4H7 +C4H7 =C4H6 +2-C4H8 1.600E+12 0.0 41.8
---- REACTION WITH CH3
C4H7 +CH3 =C4H6 +CH4 1.000E+13 0.0 0.0
---- REACTION WITH C2H3
C4H7 +C2H3 =C4H6 +C2H4 4.000E+12 0.0 0.0
---- REACTION WITH C2H5
C4H7 +C2H5 =C4H6 +C2H6 4.000E+12 0.0 0.0
C4H7 +C2H5 =1-C4H8 +C2H4 5.000E+11 0.0 0.0
C4H7 +C2H5 =2-C4H8 +C2H4 5.000E+11 0.0 0.0
C4H7 +C2H5 =C-2-C4H8+C2H4 5.000E+11 0.0 0.0
---- REACTION WITH C3H5
C4H7 +C3H5 =C4H6 +C3H6 4.000E+13 0.0 0.0
******************************************
**** 42. 1-C4H8 Reactions
**** OK CATHONET 89
******************************************
---- ISOMERIZATION
1-C4H8 =2-C4H8 4.000E+11 0.0 251.0
1-C4H8 =C-2-C4H8 4.000E+11 0.0 251.0
---- Decomposition
1-C4H8 =C3H5 +CH3 8.000E+16 0.0 307.4
1-C4H8 =C2H3 +C2H5 2.000E+18 -1.0 405.2
1-C4H8 =H +C4H7 0.411E+19 -1.0 407.7
---- Reaction with H
1-C4H8 +H =C4H7 +H2 0.500E+14 0.0 16.3
---- RAUL: Tsang, 1981
---- Mechanism and rate constants for the reactions of hydrogen atoms
---- with isobutene at high temperatures. Symp. Int. Combust. Proc 22, 1981
1-C4H8 +H =C3H6 +CH3 1.722E+13 0.0 15.0
---- Reaction with O
1-C4H8 +O =CH3CHO +C2H4 1.255E+12 0.0 3.6
1-C4H8 +O =CH3 +C2H5 +CO 1.625E+13 0.0 3.6
1-C4H8 +O =C3H6 +CH2O 2.505E+12 0.0 0.0
1-C4H8 +O =C4H7 +OH 1.300E+13 0.0 18.8
---- Reaction with OH
1-C4H8 +OH =CH3CHO +C2H5 0.100E+12 0.0 0.0
1-C4H8 +OH =CH3 +C2H6 +CO 0.100E+11 0.0 0.0
1-C4H8 +OH =N-C3H7 +CH2O 6.500E+12 0.0 0.0
1-C4H8 +OH =C4H7 +H2O 1.750E+13 0.0 29.1
---- Reaction with CH3
1-C4H8 +CH3 =C4H7 +CH4 0.100E+12 0.0 30.6
---- REACTION WITH O2
1-C4H8 +O2 =C4H7 +HO2 4.000E+12 0.0 167.4
---- REACTION WITH HO2
1-C4H8 +HO2 =C4H7 +H2O2 1.000E+11 0.0 71.4
---- REACTION WITH C2H5
1-C4H8 +C2H5 =C4H7 +C2H6 0.100E+12 0.0 33.5
---- REACTION WITH C3H5
1-C4H8 +C3H5 =C4H7 +C3H6 8.000E+10 0.0 51.9
---- REACTION WITH C4H7
1-C4H8 +C4H7 =C4H7 +2-C4H8 3.980E+10 0.0 51.9
1-C4H8 +C4H7 =C4H7 +C-2-C4H8 3.980E+10 0.0 51.9
---- RAUL: REvizar, IC4H8+CH3O->CH3OH+OTHER, Wallington, T.J.; Ball, J.C.
---- J. Phys. Chem, vol.99, p.3201 - 3205 1995
******************************************
**** 42A. (TRANS-)2-C4H8 REACTIONS
**** OK CATHONET 89
******************************************
---- Decomposition
2-C4H8 =H +C4H7 0.411E+19 -1.0 407.7
2-C4H8 =CH3 +C3H5 6.500E+14 0.0 298.3
---- Reaction with H
2-C4H8 +H =C4H7 +H2 0.500E+13 0.0 14.6
---- REACTION WITH O
2-C4H8 +O =C2H4 +CH3CHO 1.000E+12 0.0 0.0
2-C4H8 +O =I-C3H7 +CHO 0.603E+13 0.0 0.0
---- REACTION WITH OH
2-C4H8 +OH =C4H7 +H2O 1.010E+14 0.0 12.8
2-C4H8 +OH =C2H5 +CH3CHO 1.514E+13 0.0 0.0
---- Reaction with CH3
2-C4H8 +CH3 =C4H7 +CH4 0.100E+12 0.0 34.3
******************************************
**** 42B. C-2-C4H8 REACTIONS
**** OK CATHONET 89
******************************************
---- ISOMERIZATION
C-2-C4H8 =2-C4H8 1.000E+13 0.0 259.4
---- DECOMPOSITION
C-2-C4H8 =C4H6 +H2 1.000E+13 0.0 274.1
C-2-C4H8 =C4H7 +H 4.074E+18 -1.0 407.3
C-2-C4H8 =C3H5 +CH3 1.254E+15 0.0 298.3
---- REACTION WITH H
C-2-C4H8+H =C4H7 +H2 1.000E+12 0.0 14.6
---- REACTION WITH OH
C-2-C4H8+OH =C4H7 +H2O 1.255E+14 0.0 12.8
C-2-C4H8+OH =C2H5 +CH3CHO 1.400E+13 0.0 0.0
---- REACTION WITH O
C-2-C4H8+O =I-C3H7 +CHO 6.030E+12 0.0 0.0
C-2-C4H8+O =C2H4 +CH3CHO 1.000E+12 0.0 0.0
---- REACTION WITH CH3
C-2-C4H8+CH3 =C4H7 +CH4 1.000E+11 0.0 34.3
************************************************************************
**** 43A. P-C4H9 REACTIONS
**** OK CATHONET 89
******************************************
---- Decomposition
---- En base3.mch: x 1.2 (3.000E+13/0.0/130.6)
---- Original: (0.250E+14/0.0/120.6)
P-C4H9 =C2H5 +C2H4 3.000E+13 0.0 120.6
P-C4H9 =1-C4H8 +H 0.126E+14 0.0 161.6
---- NIST Kerr, J.A.; Trotman-Dickenson, A.F.
---- The reactions of alkyl radicals. Part III. n-Butyl radicals from the photolysis of n-Valeraldehyde
---- J. Chem. Soc. p.1602. 1960. (477 - 571 K) (0.02Bar)
---- kcin=(1.26E+12/0.0/113.07)
P-C4H9 =C3H6 +CH3 1.260E+12 0.0 113.1
---- Reaction with O2
P-C4H9 +O2 =1-C4H8 +HO2 0.100E+13 0.0 8.4
----
---- Thynne, J.C.J. Reactions of alkyl radicals.Trans. Faraday Soc. vol58. p.1533. 1962.(348-459K);(0.07-0.12Bar)
---- Reaction with CH3 (1.408E+13)
P-C4H9 +CH3 =1-C4H8 +CH4 1.408E+13 0.0 0.0
******************************************
**** 43B. S-C4H9 REACTIONS
**** OK CATHONET 89
******************************************
---- DECOMPOSITION
S-C4H9 =1-C4H8 +H 0.200E+14 0.0 169.2
S-C4H9 =2-C4H8 +H 5.000E+13 0.0 158.7
S-C4H9 =C-2-C4H8+H 5.000E+13 0.0 158.7
---- En Base_3: (3.600E+14/0.0/139.0)
S-C4H9 =C3H6 +CH3 3.600E+14 0.0 139.0
---- CEC 94, k_inf=(7.23E13/-0.37/0.00), (200-1500K, dlog k=+-0.5)
---- k_0(N2)=(5.53E19/-0.76/0.00), (250-1400K, dlog k=+-0.4)
---- Fcent(N2)=(0.50) , (200-1500K, dFc = +- 0.2)
---- S-C4H9 +M(1) =C3H6 +CH3 +M(1) 2.730E+10 1.110 130.49
---- LOW 1.470E+52 -10.60 146.49
---- TROE 0.526 607.0 11.0 2870.0
----
---- NIST Gang, J.; Pilling, M.J.; Robertson, S.H.
---- Asymmetric internal rotation: application to the 2-C4H9=CH3 + C3H6 reaction
---- J. Chem. Soc. Faraday Trans. vol. 93. p.1481 - 1491. 1997. kcin=(2.670E+10/1.060/129.7)
---- NIST: Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.; Gutman, D.
---- Experimental and theoretical study of the sec-C4H9 = CH3 + C3H6 reaction
---- J. Phys. Chem. vol. 98. p.11099 - 11108. 1994
---- kcin=(2.725E+10/1.11/130.53)
---- En Base_3: multiplico x 1.5 (4.087E+10/1.120/130.5) pero la omito !!!
---- S-C4H9 =C3H6 +CH3 2.725E+10 1.110 130.5
---- Gang, J.; Pilling, M.J.; Robertson, S.H.J. Chem. Soc. Faraday Trans.
---- vol. 93. p.1481 - 1491. 1997 Demasiado consumo de C4H10
---- S-C4H9 =C3H6 +CH3 2.670E+10 1.060 129.7
---- Reaction with O2
S-C4H9 +O2 =1-C4H8 +HO2 0.200E+13 0.0 18.8
S-C4H9 +O2 =2-C4H8 +HO2 0.200E+14 0.0 17.8
S-C4H9 +O2 =C-2-C4H8+HO2 0.200E+14 0.0 17.8
---- Reaction with CH3
---- kcin= (kcin_PC4H9+CH3)*8E-02 (Miyoshi, M.; Brinton, R.K;Gaseous reaction of methyl radicals with propylene)
---- J. Chem. Phys vol36.p.3019 1962.
---- En el original la omito.
---- En Base_3 entra
---- Original=(1.184E+12/0.0/0.0)
S-C4H9 +CH3 =2-C4H8 +CH4 1.184E+12 0.0 0.0
----
******************************************
**** 45. C4H10 REACTIONS
******************************************
---- OK CEC 91
---- (300-1200K) Uncertaintly=2.0 kcin_Literatura=(1.150E+13/0.0/0.0)
---- Divido por 1.42:
---- C2H5 +C2H5 =C4H10 8.000E+12 0.0 0.0
---- Divido por 2:
C2H5 +C2H5 =C4H10 5.752E+12 0.0 0.0
----
---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions
---- J. Phys. Chem. vol.89. p.4600 1985
---- C4H10 =C2H5 +C2H5 7.940E+16 0.0 335.9
---- OK WJ PITZ, CK WESTBROOK, COMB & FLAME 63, 113-33, 1986
C4H10 >N-C3H7 +CH3 0.100E+18 0.0 357.6
N-C3H7 +CH3 >C4H10 0.200E+14 0.0 0.0
---- RAUL: NIST, Dean, A.M.
---- Predictions of pressure and temperature effects upon radical addition
---- and recombination reactions. J. Phys. Chem. vol.89. p. 4600, 1985.
---- 300-2500K (RRKM)
C4H10 =P-C4H9 +H 9.516E+07 0.0 409.9
C4H10 =S-C4H9 +H 6.023E+07 0.0 397.4
----
---- OK WA 22ND SYMP. 89
---- C4H10 +H >P-C4H9 +H2 0.563E+08 2.0 32.2
---- P-C4H9 +H2 >C4H10 +H 0.912E+13 0.0 60.6
---- C4H10 +H >S-C4H9 +H2 0.175E+08 2.0 20.9
---- S-C4H9 +H2 >C4H10 +H 0.154E+14 0.0 66.5
----
---- Baldwin, R.F.; Walker, R.W. Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + Alkanes
---- J. Chem. Soc. Faraday Trans. 1: vol.75. p. 140. 1979. (753 - 773 K) Theoretical
---- x 2 (1.319E+14_N;1.957E+14_S)
C4H10 +H =P-C4H9 +H2 2.638E+14 0.0 39.2
C4H10 +H =S-C4H9 +H2 1.957E+14 0.0 33.26
----
---- Nicholas, J.E.; Vaghijiani, G.L Reaction probabilities, cross sections, and threshold energies in the reaction of
---- isotopically pure H atoms and n-butane. J. Chem. Phys.. vol 91. p.5121 1989. (250-500K)
---- Es muuuuuy rapida !!!!!!!
---- C4H10 +H =P-C4H9 +H2 3.800E+13 0.0 50.968
---- C4H10 +H =S-C4H9 +H2 2.302E+13 0.0 33.008
----
---- OK WA 22ND SYMP. 89
C4H10 +O >P-C4H9 +OH 0.113E+15 0.0 32.9
P-C4H9 +OH >C4H10 +O 0.148E+14 0.0 51.3
C4H10 +O >S-C4H9 +OH 0.562E+14 0.0 21.8
S-C4H9 +OH >C4H10 +O 0.735E+13 0.0 40.2
----
---- Cohen, N. Westberg,K.R. The use of transition state theory to extrapole rate coefficients for reactions of O atoms with alkanes.
---- Int. Journal Chem Kinetics. vol 18 p.99. 1986. (250-2000K)
---- kcin_N=(4.252E12/(T/298)2.4/23.031)
---- kcin_S=(1.162E12/(T/298)2.6/10.809)
---- C4H10 +O =P-C4H9 +OH 4.903E+06 2.4 23.03
---- C4H10 +O =S-C4H9 +OH 4.289E+05 2.6 10.80
----
---- Herron, J. T. Huie. R.E. Rate constants for the reactions of atomic oxygen (O3p) with organic compounds in the gas phase. Journal
---- Physc.Chem.Ref. Data. vol 2. p.467-518.1973. (298-1000K) Uncertaintly=1.3. Theorycal. kcin_N=(2.999E13/0.0/24.278)
---- C4H10 +O =P-C4H9 +OH 2.999E+13 0.0 24.28
---- C4H10 +O =S-C4H9 +OH 4.435E+13 0.0 20.04
----
---- Droege, A.T.; Tully, F.P. Hydrogen-atom abstraction from alkanes by OH. 5. n-Butane
---- J. Phys. Chem. vol90. p.5937. 1987. (294 - 509 K); 0.53 Bar. (3.317E-03)
---- 4.137E+07_N;7.224E+07_S (dividi por 2!!!)
---- Original: (4.130E+07/ 1.73/3.151)
---- C4H10 +OH >P-C4H9 +H2O 2.068E+07 1.73 3.151
---- P-C4H9 +H2O >C4H10 +OH 0.717E+08 1.7 93.3
---- C4H10 +OH >S-C4H9 +H2O 3.612E+07 1.64 -1.031
---- S-C4H9 +H2O >C4H10 +OH 0.128E+09 1.6 89.1
----
---- RAUL: Tambien. Cohen, N.
---- Are reaction rate coefficients additive?
---- Revised transition state theory calculations for OH + alkane reactionsn
---- Int. J. Chem. Kinet. vol.23. p.397-417, 1991.
---- kcin_N=(9.395E+11/(T/298 K)1.80/3.991)
---- kcin_S=(4.758E+11/(T/298 K)2.00/2.494)
---- Muy rapida (demasiado consumo de C4H10)
---- C4H10 +OH =P-C4H9 +H2O 3.306E+07 1.8 3.991
---- C4H10 +OH =S-C4H9 +H2O 5.358E+06 2.0 2.494
----
---- Atkinson: (3.00E03)
---- C4H10 +OH =P-C4H9 +H2O 5.391E+06 2.0 1.887
---- C4H10 +OH =S-C4H9 +H2O 5.202E+06 2.0 2.569
----
---- Cathonnet, J.C. Boettner and H James. 18 Sympo. Int. Comb. 1981. p903-913.
---- kcin_N=(3.692E+12/0.0/6.843)
---- kcin_S=(5.643E+12/0.0/3.559)
C4H10 +OH =P-C4H9 +H2O 3.000E+12 0.0 6.843
C4H10 +OH =S-C4H9 +H2O 5.643E+12 0.0 3.559
----
---- RAUL: NIST: Pitz, W.J.; Westbrook, C.K
---- Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock
---- CandF. vol.63, p.113-133, 1986.
C4H10 +HO2 >P-C4H9 +H2O2 1.140E+13 0.0 81.2
P-C4H9 +H2O2 >C4H10 +HO2 0.458E+13 0.0 41.1
----
C4H10 +HO2 >S-C4H9 +H2O2 6.800E+12 0.0 71.2
S-C4H9 +H2O2 >C4H10 +HO2 0.163E+13 0.0 31.0
----
---- OK WA 22ND SYMP. 89
C4H10 +O2 >P-C4H9 +HO2 0.250E+14 0.0 205.2
P-C4H9 +HO2 >C4H10 +O2 0.250E+13 0.0 -9.2
C4H10 +O2 >S-C4H9 +HO2 0.400E+14 0.0 199.3
S-C4H9 +HO2 >C4H10 +O2 0.407E+13 0.0 -15.2
---- OK CATHONET 89
C4H10 +CH3O >P-C4H9 +CH3OH 0.300E+12 0.0 29.3
P-C4H9 +CH3OH >C4H10 +CH3O 0.122E+11 0.0 209.4
C4H10 +CH3O >S-C4H9 +CH3OH 0.600E+12 0.0 29.3
S-C4H9 +CH3OH >C4H10 +CH3O 0.244E+11 0.0 209.4
--------
---- Yampol'skii, Yu.P. Reactivity of Primary and Secondary Carbon-Hydrogen Bonds in Radical Processes
---- React. Kinet. Catal. Lett. vol.2 p.449. 1975.
---- kcin=(5.011E+11/0.0/56.9) Estimated. !!!Theory.
---- C4H10 +CH3 =P-C4H9 +CH4 5.011E+11 0.0 56.9
---- Anterior multiplicada por 2!
C4H10 +CH3 =P-C4H9 +CH4 1.094E+12 0.0 56.9
---- C4H10 +CH3 =S-C4H9 +CH4 4.270E+11 0.0 43.9
---- Sway, M. Kinetics of abstraction reactions of methyl radicals with alkanes in gas phase
---- Indian J. Chem. vol29. p.748. 1990. (399 - 434 K) 0.67 Bar. (incertidumbre 1.26)
---- C4H10 +CH3 =S-C4H9 +CH4 6.872E+11 0.0 39.99
C4H10 +CH3 =S-C4H9 +CH4 1.444E+12 0.0 39.99
----
---- Yampol'skii, Yu.P.; Nametkin, N.S. Rate Constants of Reactions of CH3, C2H5, and Atomic Hydrogen with Butane at High
---- Temperatures. Kinet. Catal. vol. 17 pag.57. 1976. kcin=(3.162E+12/0.0/46.47)
---- C4H10 +CH3 =PRODUCTOS +CH4 3.162E+12 0.0 46.47
----
---- From: M. Cathonnet...C3_C4.18 Sympo. Ref: Sundaram,K.M and Froment,G.F.: I. and E.C. Fundamentals 17,174 (1978)
C4H10 +C2H3 =P-C4H9 +C2H4 1.000E+12 0.0 75.24
C4H10 +C2H3 =S-C4H9 +C2H4 8.000E+11 0.0 70.22
----
----
---- Smpol'skii, Yu.P.; Nametkin, N.Rate Constants of Reactions of CH3, C2H5, and Atomic Hydrogen with Butane at High
---- Temperatures. Kinet. Catal. vol 17.p.57. 1976. (980-1060K) (0.07Bar) Experimental Incertidumbre=5.0
---- k_total=1.581E+13. Si distribuye en proporcion 2:1 entre P y S
---- k_total=3.162E+12.!!!!!! Esta es la original, al multiplicarla por 5 da el valor de 1.581E+13 !!!
C4H10 +C2H5 =P-C4H9 +C2H6 1.054E+13 0.0 53.54
C4H10 +C2H5 =S-C4H9 +C2H6 5.270E+12 0.0 48.54
----
---- From: M. Cathonnet...C3_C4.18 Sympo. Ref: Sundaram,K.M and Froment,G.F.: I. and E.C. Fundamentals 17,174 (1978)
C4H10 +C3H5 =P-C4H9 +C3H6 4.000E+11 0.0 78.58
C4H10 +C3H5 =S-C4H9 +C3H6 8.000E+11 0.0 70.22
----
---- Modeling of Aromatic and Policyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames.
---- N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi and S.M. Senkan.
---- Combustion Sci And Tech. 1996, Vol 116-117, pp.211-287
---- kcin_P=(7.940E+11/0.0/85.69)
---- kcin_S=(3.160E+11/0.0/68.55)
---- C4H10 +C3H5 =P-C4H9 +C3H6 7.940E+11 0.0 85.69
---- C4H10 +C3H5 =S-C4H9 +C3H6 3.160E+11 0.0 68.55
------
******************************************
**** C formation reactions ***********
******************************************
---- R.L. THORNE, M. C. BRANCH, D. W. CHANDLER, R. J. KEE, J. A. MILLER,
---- SYMP. (INT) COMB., 21, 963, I(86)
CH +H =C +H2 1.500E+14 0.00 0.0
C +O2 =CO +O 5.000E+13 0.00 0.0
----
************************************************************************
******************************************
**** *
**** I S O - M E C H A N I S M *
**** *
******************************************
****
******************************************
**** i-40. i-C4H7 Reactions
******************************************
---- Chevalier1993
I-C4H7 =C3H4 +CH3 1.000E+13 0.0 213.6
******************************************
**** i-41. i-C4H8 Reactions
******************************************
---- Decomposition
I-C4H8 =C3H5 +CH3 5.000E+18 -1.0 307.4
---- Original= (1.000E+17/0.0/368.5)
---- Douhou, S.; Perrin, D.; Martin, R Etude cinetique et modelisaiton de la reaction thermique de l'isobutene vers 800 K.
---- I. Isobutene pur. J. Chim. Phys. vol.91. p.1597-1627 1994.
---- (763-813K);(0.01-0.13Bar) kcin=(2.00%+15/0.0/3.65.83) Experimental
I-C4H8 =I-C4H7 +H 2.000E+15 0.0 365.8
---- Reaction with H
I-C4H8 +H =I-C4H7 +H2 1.000E+13 0.0 15.9
---- Tsang, W.; Walker, J.A. Mechanism and rate constants for the reactions of hydrogen atoms with isobutene at high
---- temperatures. Symp. Int. Combust. Proc. vol.22. p.1015 1989.
---- (1000-1180K) (2.53-3.04Bar) kcin=(1.72257E+13/0.0/15.049)
I-C4H8 +H =C3H6 +CH3 1.722E+13 0.0 15.0
---- Reaction with O
I-C4H8 +O =I-C4H7 +OH 2.500E+05 2.6 -4.7
I-C4H8 +O =I-C3H7 +CHO 7.230E+05 2.3 -4.4
---- Reaction with OH
I-C4H8 +OH =I-C4H7 +H2O 9.600E+12 0.0 5.2
I-C4H8 +OH =I-C3H7 +CH2O 1.500E+12 0.0 0.0
---- Reaction with CH3
---- T.J. Mitchell und S.W. Benson, Int.J.Chem.Kinet., 1993,25,931-955
I-C4H8 +CH3 =I-C4H7 +CH4 6.030E+11 0.0 37.23
******************************************
**** i-42a. i-C4H9 Reactions
******************************************
---- Decomposition
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
---- kcin=(2.000E+13/0.0/125.34)
---- Knyazev, V.D.; Slagle, I.R.. Unimolecular decomposition of n-C4H9 and iso-C4H9 radicals
---- J. Phys. Chem. vol 100 p.5318 - 5328, 1996. kcin=(2.141E+12/0.65/128.87)
---- (298-900K) (0-10.13Bar)
I-C4H9 =C3H6 +CH3 2.141E+12 0.65 128.90
---- M. Weissman and S. Benson, Int. J. Chem. Kinet., 1984,16,307
---- CEC94, k_inf= 8.300E+13 0.0 159.63
I-C4H9 =I-C4H8 +H 1.000E+14 0.0 151.88
---- Reaction with O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H9 +O2 =I-C4H8 +HO2 2.410E+10 0.0 0.0
---- Reaction with CH3
---- incertidumbre 2.0 Tsang
I-C4H9 +CH3 =I-C4H8 +CH4 6.040E+12 -0.32 0.0
---- Reaction with C3H8
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H9 +C3H8 =I-C4H10 +N-C3H7 0.903E+00 3.65 38.240
I-C4H9 +C3H8 =I-C4H10 +I-C3H7 1.506E+00 3.46 31.179
******************************************
**** i-42b. t-C4H9 Reactions
******************************************
---- Decomposition
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990),
---- und CEC94, S.1026, +-0.5, 300-800K
T-C4H9 =H +I-C4H8 8.300E+13 0.0 159.63
---- Warnatz, Combustion Chemistry (ed. W.C. Gardiner), Springer-Verlag,
----- NY 1984,Chapter 5, pp.197
T-C4H9 =C3H6 +CH3 1.000E+16 0.0 193.00
---- Reaction with O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
T-C4H9 +O2 =I-C4H8 +HO2 4.820E+11 0.0 0.00
----
---- Reaction with CH3
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
T-C4H9 +CH3 =I-C4H8 +CH4 1.258E+13 0.0 2.494
---- disproposition
---- CEC94, p.1026, +-0.15 at 300K rising to +-0.3 at 1000K
T-C4H9 +T-C4H9 =I-C4H10 +I-C4H8 7.226E+16 -1.73 0.00
******************************************
**** i-43. i-C4H10 Reactions
******************************************
---------------------------------------
----- Decomposition of i-C4H10
---------------------------------------
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
---- kcin=(1.100E+26/-2.61/377.985) Error numerico
---- Hidaka, Y.; Fujiwara, M.; Oki, T.; Kawano, H.
---- Thermal decomposition of isobutane in shock waves. Rate constant of initiation reaction
---- Chem. Phys. Lett. Vol 144, p.570 1988
---- (1000-1560K) (1.32-2.93Bar)
I-C4H10 =CH3 +I-C3H7 4.500E+16 0.0 339.23
---- Chevalier 1993, Diss
I-C4H10 =T-C4H9 +H 1.000E+15 0.0 390.7
---- Chevalier 1993, Diss
I-C4H10 =I-C4H9 +H 1.000E+15 0.0 410.4
---------------------------------------
----- H-atom abstraction of i-C4H10
---------------------------------------
---- Reaction with H
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +H =T-C4H9 +H2 6.020E+05 2.4 10.810
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +H =I-C4H9 +H2 1.810E+06 2.54 28.270
---- Reaction with O
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O =T-C4H9 +OH 1.560E+05 2.5 4.660
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O =I-C4H9 +OH 4.280E+05 2.5 15.250
---- Reaction with OH
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +OH =T-C4H9 +H2O 5.730E+10 0.51 0.27
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +OH =I-C4H9 +H2O 2.290E+08 1.53 3.24
---- Reaction with HO2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +HO2 =I-C4H9 +H2O2 3.010E+04 2.55 64.850
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +HO2 =T-C4H9 +H2O2 3.610E+03 2.55 44.070
---- Reaction with CH3
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3 =T-C4H9 +CH4 0.904E+00 3.46 19.24
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3 =I-C4H9 +CH4 1.360E+00 3.65 29.900
---- Reaction with O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O2 =I-C4H9 +HO2 4.040E+13 0.0 213.100
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +O2 =T-C4H9 +HO2 3.970E+13 0.0 184.080
---- Reaction with CH3O2
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3O2 =I-C4H9 +CH3O2H 3.010E+04 2.55 64.850
---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990)
I-C4H10 +CH3O2 =T-C4H9 +CH3O2H 3.610E+03 2.55 44.070
---- RAUL: NIST, Tsang, 1990. Incer=2.50.
I-C4H10 +C2H5 =I-C4H9 +C2H6 1.385E+00 3.65 38.247
---- RAUL: NIST, ZTsang, 1990, incer=2.50
I-C4H10 +C2H5 =T-C4H9 +C2H6 0.541E+00 3.46 24.943
----
----
----
----
----
----
--------
--------
************************************************************************
****
**** PART TWO: REACTIONS LOW TEMPERATURE
****
************************************************************************
--------
--------
----
----
----
----
----
----
************************************************************************
**** 1. CH3CO REACTIONS
************************************************************************
---- 17b
---- Ya incluidas en la primera parte
---- RAUL: NIST, 2000
---- Tsang, 1986: kcin=(6.023E+13/0/0)
---- Hassinen, E.; Koskikallio, J.,:kcin=(2.3188E+13/0/0)
---- Yee Quee, M.J.; Thynne, J.C.J.:kcin=(1.8189E+13/0/0)
----CH3O +CH3O >CH2O +CH3OH 1.000E+12 0.0 0.0
----CH2O +CH3OH >CH3O +CH3O 2.88E+10 0.452 347.0
---- RAUL: NIST, 2000
---- Tsang.1986
CH3O +CH3 =CH2O +CH4 2.409E+12 0.0 0.0
---- NIST, 2000, Tsang.1986
---- Uncrertainty=5.0
CH3O +HO2 =CH2O +H2O2 3.011E+11 0.0 0.0
---- NIST, 2000 Tsang, 1986
---- Uncertainty=5.0
CH3O +C2H5 =CH2O +C2H6 2.409E+13 0.0 0.0
---- NIST, 2000, Tsang, 1986
---- Uncertainty=5.0
CH3O +C2H3 =CH2O +C2H4 2.409E+13 0.0 0.0
************************************************************************
**** 2. CH3CO REACTIONS
************************************************************************
----15b
---- CH3CO +O2 >CH3CO3 1.000E+12 0.0 0.0
---- CH3CO3 >CH3CO +O2 1.020E+07 2.55 172.0
---- koriginal=(1.000E+12 0.0 0.0)
---- NIST 2000, Sehested, J.; Christensen, L.K.; Nielsen, O.J.; Wallington, T.J.
---- Absolute rate constants for F + CH3CHO and CH3CO + O2,
---- relative rate study of CH3CO + NO, and the product distribution of the F + CH3CHO reaction
---- Int. J. Chem. Kinet. vol.30 , p.913-921. 1998. Experimental, 295K. 1 Bar
CH3CO +O2 =CH3CO3 2.650E+12 0.0 0.0
---- NIST, 2000, CEC, 1994
---- Uncertainty=1.58
CH3CO +O =CO2 +CH3 4.818E+23 0.0 0.0
---- NIST, 2000, Tsang, 1986
---- Uncertainty=3.00
CH3CO +OH =CH2CO +H2O 1.210E+13 0.0 0.0
---- NIST, 2000: Adachi, H., Basco, N., and James, D. G. L.
---- The Acetyl Radicals CH3CO and CD3CO Studied by Flash Photolysis and Kinetic Spectroscopy
---- Int. J. Chem. Kinet. 1981, v.13, p.1251.
CH3CO +CH3 =C2H6 +CO 3.300E+13 0.0 0.0
---- NIST 2000: Hassinen,E., Kalliorinne,K., Koskikallio,J.
---- Kinetics of reactions between methyl and acetyl radicals in
---- gas phase produced by flash photolysis of acetic anhydride.
---- Int. J. Chem. Kinet., 1990, v. 22, p. 741 I
CH3CO +CH3 =CH4 +CH2CO 6.100E+12 0.0 0.0
************************************************************************
**** 3. CH3CHO REACTIONS
************************************************************************
---- 14b
CH3CHO +CH3O2 >CH3CO +CH3O2H 1.000E+12 0.0 42.0
CH3CO +CH3O2H >CH3CHO +CH3O2 5.030E-01 3.42 30.4
---- NIST, 2000: Hohlein, G.; Freeman, G.R.
---- Radiation-sensitized pyrolysis of diethyl ether. Free-radical reaction rate parameters
---- VOL.92. 6118, 1970 (357-676K, 0.05-2.8 Bar)
CH3CHO +C2H5 =CH3CO +C2H6 1.258E+12 0.0 35.586
---- RAUL: Scherzer, K.; Loser, U.; Stiller, W.
---- Revizar: BSBL-Rechnungen zu wasserstoffabspaltungsreaktionen durch alkenylradikale;
---- Vinylradikale. Z. Chem. vol. 27. p.300. 1987. kcin=(8.131E10/0.0/15.382)
CH3CHO +C2H3 =CH3CO +C2H4 8.131E+10 0.0 15.382
************************************************************************
**** 4. CH3CO3 REACTIONS
************************************************************************
---- 27b
---- korigi_for=(4.640E+10 0.0 -10.8), kcin_back=(2.290E+11-0.0901 151.0)
---- NIST 2000: Crawford, M.A.; Wallington, T.J.; Szente, J.J.; Maricq, M.M.; Francisco, J.S.
---- Kinetics and mechanism of the acetylperoxy + HO2 reaction
---- J. Phys. Chem. A. vol.103. p.365-378, 1999.
CH3CO3 +HO2 =CH3CO3H +O2 2.111E+11 0.0 -11.22
----
---- 22b
---- NIST: Dixon, D.J.; Skirrow, G.; Tipper, F.H.
---- Low Temperature Gas-phase Oxidation of Aldehydes. Part 2. Retardation above 120oC
---- J. Chem. Soc. Faraday Trans. 1. vol.70. p.1090. 1974.
---- kcin=(2.4 veces Ray, D.J.M.)
---- kcin=(7.198E+09/0/0)
---- 22.b
CH3CO3 +CH2O =CH3CO3H +CHO 7.198E+09 0.0 0.0
---- CH3CO3 +CH2O >CH3CO3H +CHO 1.000E+12 0.0 42.0
---- CH3CO3H +CHO >CH3CO3 +CH2O 2.420E+07 1.01 25.4
---- 70
CH3CO3 +CH3 >CO2 +CH3 +CH3O 3.610E+13 0.0 0.0
----
---- NIST: Ray, D.J.M.; Waddington, D.J.
---- Epoxidation of Alkenes in the Gas Phase
---- J. Phys. Chem.. vol. 76. 3319. 1972. 457K. 0.13 Bar.
---- kcin=(2.999E+09/0/0)
---- 14b
CH3CO3 +CH3CHO =CH3CO3H +CH3CO 2.999E+09 0.0 0.0
---- CH3CO3 +CH3CHO >CH3CO3H +CH3CO 1.890E+12 0.0 30.1
---- CH3CO3H +CH3CO >CH3CO3 +CH3CHO 1.960E+07 1.21 30.2
---- 22b
CH3CO3 +C2H5CHO >CH3CO3H +C2H5CO 1.000E+12 0.0 42.0
CH3CO3H +C2H5CO >CH3CO3 +C2H5CHO 1.270E+10 0.266 47.1
************************************************************************
**** 5. CH3CO3 REACTIONS
************************************************************************
---- 15
CH3CO3H =CO2 +CH3 +OH 3.980E+15 0.0 167.0
----
---- NIST 2000: Sahetchian, K.A.; Rigny, R.; Tardieu de Maleissye, J.; Batt, L.;
---- Anwar Khan, M.; Mathews, S. The pyrolysis of organic hydroperoxides (ROOH).
---- Symp. Int. Combust. Proc. vol.24. p.637-643. 1992. Exp.(533-720 K.0.3-2.3Bar).
---- Uncertainty=2.51. CH3C=0 (O -> Grupo C=O). Problema: Que haceer con CH3CO2?
---- Base 3 la incluyo
CH3CO3H =CH3CO2 +OH 3.017E+10 0.0 167.9
----
---- Revision bibliografica: R.D Wilk 1986!!!
---- CH3CO2 -> CH3 +CO2 (Problema: Valores de la Cinetica???)
---- Base 3 la incluyo
CH3CO2 +M(1) =CO2 +CH3 +M(1) 8.700E+15 0.0 60.192
---- Este paso es dominante a baja temperatura. A alta temp. la descomposicion directa es la favorecida:
---- CH3CO + M -> CH3 + CO + M (Reaccion ya incluida!!!!)
----
************************************************************************
**** 6. C2H4 REACTIONS
************************************************************************
----
---- C2H4O = OXIRAN !!!!!
---- ----O---
---- | | -> C2H4O (Oxyran)
---- CH2---CH2
----
---- ----O---
---- | | -> C2H3O (Oxyranil)
---- CH2---CH*
----
---- CEC 94.
---- 600-900K +/- 0.15 at 600K 0.25 900K. Uncertainty=1.78
---- C2H4O = OXIRAN !!!!!
---- kcin=(2.228E+12/0.0/71.9)
---- C2H4 +HO2 =OXIRAN +OH 2.228E+12 0.0 71.9
----
---- 2003
---- kcin=(3.793E+12/0.0/74.74)
---- 2.093E+12 (+,-) 0,15 (1.41) 600-700K
---- (+,-) 0,25 (1.78) 900K
C2H4 +HO2 =OXIRAN +OH 2.793E+12 0.0 74.74
----
----
---- **********
---- RQ 11-11-2004
---- Inicio C2H4OOH Mechanism
----
---- Nota from:Wilk, Westbrook, Pitz and Cernansky. 23 Symp. p.203-210.
---- C2H4 + HO2 -> C2H4OOH Ea = 33.44 kJ/mol
---- C2H4OOH -> C2H4 + HO2 Ea = 83.60 kJ/mol kcin=(2.000E13/0.0/98.23) Ranzi94 Nancy
----
---- kcin=(2.860E+11/0.0/91.91)
---- C2H4OOH =C2H5O2 kcin=(2.860E+11/0.0/91.96)
---- C2H4OOH -> OXIRAN + OH kcin=(1.500E+11/0.0/83.60) Ranzi94 Nancy
----
---- Nancy: CHEMKIN format Ea in KCAL/mol !!!!
---- C2H5OO=R16C2H4O2H 4.2E12 0. 36.9E3 ! HUGHES93 !154.24
---- C2H4O2H=C2H4O +OH 1.5E11 0. 20.0E3 !(383,-383)<RANZI94>! 83.60
---- C2H4O2H=CH2OH +HCHO 2.5E13 0. 27.5E3 !(384,-384)<RANZI94>!114.95
---- C2H4O2H=C2H4 +O2H 2.0E13 0. 23.5E3 !(385,-385)<RANZI94>! 98.23
----
---- R15 Homolitic O-O Bound Scission For Radicals
---- kcin=(1.000E+09/0.0/31.4)
---- kcin=(1.500E+11/0.0/83.60) Ranzi94 Nancy
---- C2H4OOH =OXIRAN +OH 1.000E+09 0.0 31.40
---- C2H4OOH =OXIRAN +OH 1.500E+11 0.0 83.60
----
---- Trabajo con el mecanismo de Wilk y los valores de Nancy, y adiciono CH2O formacion:
----
---- C2H4OOH =C2H5O2 2.860E+11 0.0 91.96
---- 2C2OOH1 =C2H5O2 2.860E+11 0.0 91.96
----
---- C2H4OOH =HO2 +C2H4 2.000E+13 0.0 98.23
----
----****HO2 +C2H4 =C2H4OOH 2.000E+15 0.0 33.44
HO2 +C2H4 =2C2OOH1 1.000E+11 0.0 71.44
----****C2H4OOH =OXIRAN +OH 1.500E+11 0.0 83.60
---- 2C2OOH1 =OXIRAN +OH 1.500E+11 0.0 83.60
----
----****C2H4OOH =CH2OH +CH2O 2.000E+13 0.0 114.95
2C2OOH1 =CH2OH +CH2O 2.000E+13 0.0 114.95
----
---- End C2H4OOH Mechanism !!!
---- ***************
----
---- Konnov Estimated
---- k = 1.000E+12 exp(- 25000.0 cal/mol /RT) cm3/mol s
C2H4 +C2H5O2 =C2H5OOH +C2H3 1.000E+12 0.0 104.50
----
---- NIST 2000. Oxirane System.
---- Bogan, D.J.; Hand, C.W. Absolute Rate Constant, Kinetic Isotope Effect,
---- and Mechanism of the Reaction of Ethylene Oxide with Oxygen(3P) Atoms
---- J. Phys. Chem. vol.82. p.2067. 1978. Exp. 298-691K. Uncertainty=1.2.
OXIRAN +O =C2H3O +OH 1.909E+12 0.0 21.9
----
---- Konnov Estimated
---- kcin=(1.000E+11/0.0/58.6)
OXIRAN +CH2CHO =CH3CHO +C2H3O 1.000E+11 0.0 58.6
----
---- Baldwin, R.R.; Keen, A.; Walker, R.W.
---- Studies of the decomposition of oxirane and of its addition to slowly reacting
---- mixtures of hydrogen and oxygen. J. Chem. Soc. Faraday Trans.1. vol.80. p.435.1984
---- Experimental. 297-753K. 0.08-0.67 Bar
OXIRAN +H =C2H3O +H2 8.010E+13 0.0 40.5
----
---- NIST Lifshitz, A.; Ben-Hamou, H.
---- Thermal reactions of cyclic ethers at high temperatures. 1.
---- Pyrolysis of ethylene oxide behind reflected shocks. J. Phys. Chem
---- vol.87. p.1782. 1983.
OXIRAN +H =C2H4 +OH 9.516E+10 0.0 20.9
OXIRAN +H =C2H3 +H2O 4.999E+09 0.0 20.9
----
---- NIST. Baldwin 1984.
---- kcin=(1.782E+13/0.0/15.130) (+,-) 1.962 kJ
---- OXIRAN +OH =H2O +C2H3O 1.782E+13 0.0 16.130
----
---- NIST. Lorenz, K.; Zellner, R. Rate constants and vinoxy product yield in the reaction OH + Ethylene Oxide
---- Ber. Bunsenges. Phys. Chem. vol.88 p1228 1984. (298 - 435 K)(0.01-0.08Bar)
---- kcin=(1.110E-11/0.0/12.139) (�3.99x10-12 cm3/molecule s)( �1214 J/mole)/RT
---- kcin=(6.625E+12/0.0/12.139) (�2.4031*E+12cm3/mol s)
---- kcinmax=4.222
---- kcinmin=9.028
OXIRAN +OH =H2O +C2H3O 4.625E+12 0.0 13.239
----
---- NIST. Baldwin 1984.
---- Uncertainty=1.41
OXIRAN +CH3 =CH4 +C2H3O 1.072E+12 0.0 49.47
----
---- korig=(1.072E+12/0.0/49.47) Lifshitz, A.; Ben-Hamou, H.
---- Decomposition, NIST 2000: Yang, H.X.; Chen, H.; Han, D.G
---- The rate constant determination for the isomerization of
---- ethylene oxide to acetaldehyde by chemical shock tube
---- Acta Chim. Sin.(Engl.Ed.).vol.47. p.941. 1989.(1060-1170K)
OXIRAN =CH3CHO 6.310E+13 0.0 247.71
----
---- Baldwin, R.R.; Keen, A.; Walker, R.W.
---- Studies of the decomposition of oxirane and of its addition to slowly reacting mixtures of hydrogen
---- and oxygen at 480 C. J. Chem. Soc. Faraday Trans. 1:vol.80, p 435, 1984.
---- (830-1200K;1.52-10.13Bar) Experimental. 5.25x10-4 (s-1)
---- OXIRAN =CH3 +CHO 5.250E-04 0.0 0.00
---- OXIRAN =CH4 +CO 5.000E-04 0.0 0.00
----
---- Lifshitz, A.; Ben-Hamou, H. Thermal reactions of cyclic ethers at high temperatures.
---- 1. Pyrolysis of ethylene oxide behind reflected shocks. J. Phys. Chem. vol 87 p.1782, 1983.
---- (830-1200K) (1.52,10.13Bar).
OXIRAN =CH4 +CO 1.210E+13 0.0 239.46
OXIRAN =CH3 +CHO 3.630E+13 0.0 239.46
----
---- konnov.
---- Konnov, A.A. High-temperature pyrolysis and oxidation of oxygen-containing ethane derivatives.
---- Ph.D. Thesis, Institute of Chemical Physics, USSR Academy of Sciences, 1985.
---- kcin=(1.000E+14/0.0/217.14)
---- NOTA: NO incluir la segunda !!!!
OXIRAN +O2 =HO2 +C2H3O 1.000E+14 0.0 217.14
---- OXIRAN +HO2 =H2O2 +C2H3O 5.000E+13 0.0 75.50
----
---- konnov.
---- Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., and Skachkov, G.I.
---- Pyrolysis and ignition of ethylene oxide. Sov. J. Chem. Phys., 1990, v.6, pp.2181-2195.
---- kcin=(4.000E+15/0.0/0.0)
C2H3O +H +M(1) =OXIRAN +M(1) 4.000E+15 0.0 0.00
----
---- Chen, J.; Young, V.; Hooshiyar, P.A.; Niki, H.; Hurley, M.D
---- FTIR spectroscopic study of the Cl-atom-initiated reactions of ethylene oxide in O2/N2 diluent
---- J. Phys. Chem. vol.99. p.4071 - 4077. 1995. (297K)(0.93Bar) kcin=(2.000E+04/0/0)
----
---- NOTA: Konnov usa para la decomposicion: (8.000E+11/0.0/41.80), de acuerdo con NIST(*) esta reaccion
---- es 8.55 veces menos que la decomposicion a CH3CO, luego se divide Konnov(o Wilk) entre 8 y es el valor que se utiliza!!
---- Wilk case: 8.500E+14/8.55 = 1.000E+14 kcin=(1.000E+14/0.0/58.52)
---- (*) = Baldwin, R.R.; Keen... et al.
---- kcin=(
C2H3O =CH2CHO 1.000E+14 0.0 58.52
----
---- Baldwin, R.R.; Keen, A.; Walker, R.W. Studies of the decomposition of oxirane and of its addition
---- to slowly reacting mixtures of hydrogen and oxygen at 480 C. J. Chem. Soc. Faraday Trans.1: vol 80, p.435 1984
---- (753 K)(0.08-0.67 Bar)
---- kcin= (8.55 [+,- 3.2] veces "C2H3O=CH2CHO")
---- 8.500E+14; 58.52 = C2H3O =CH3CO
C2H3O =CH3CO 8.500E+14 0.0 58.52
----
---- Konnov.
---- kcin=(8.000E+11/0.0/41.80)
---- C2H3O =CH3 +CO 8.000E+11 0.0 41.80
----
---- Wilk, Richard; Pitz W.; Westbrook C.; Nicholas P. Cernansky. Chemical kinetics modeling of ethene oxidation
---- at low and intermedia temperatures. 23th. p 203-210. 1990.
---- kcin=(8.500E+14/0.0/58.52)
---- C2H3O =CH3CO 8.500E+14 0.0 58.52
----
----
---- RQ 11-11-2004
---- Waddington Mechanism: Ref:Tully,F.P.: Chem. Phys. Lett. 143, 5 (1988)
---- C2H4 +OH =C2H4OH 1.630E+12 0.0 -2.884
---- C2H4OH +O2 =O22OH 1.630E+12 0.0 -2.884
---- O22OH =CH2O +CH2O +OH 1.630E+12 0.0 0.00
----
---- H H @
---- | | |
---- @--C--C--OH -> C2H4OH (Isomero= CH3-CH-OH)
---- | |
---- H H
----
---- Ya definidos:
---- CH2CH2OH = C2H4OH
---- CH3CHOH = Isomero de CH2CH2OH, ver numeral 30D
----
---- Atkinson,R., Baulch,D.L., Cox,R.A., Hampson,R.F.,Jr., Kerr,J.A., Troe,J.
---- Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV.
---- IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry.
---- WEB version December 2000.
OH +C2H4 +M(1) =CH2CH2OH+M(1) 5.420E+12 0.00 0.0
LOW 1.190E+27 -3.10 0.0
TROE 0.480 000.0 0000 000.0
----
---- From Konnov:
---- Borisov, A.A., et al. 1991.
CH2CH2OH=CH3CHOH 1.000E+11 0.00 112.86
----
---- Ref 32, nota 5
---- kcin=(1.000E+09/0.0/72)
CH2CH2OH=CH3 +CH2O 1.000E+09 0.00 72.0
----
---- From Konnov.
---- Anastasi,C., Simpson,V., Munk,J., Pagsberg,P. UV spectrum and the kinetics and reaction pathways of
---- the self-reaction of CH2CH2OH radicals. J. Phys. Chem. 94: 6327 (1990)
---- Konnov incluye la isomerizacion de C2H4OH (cambio de la posicion radical) y cada uno de los isomeros
---- contribuye a la formacion de ethanol en igual medida.
---- kcin=(5.00E+13 cm3/mol s)
CH2CH2OH+C2H5O =C2H5OH +CH3CHO 5.000E+13 0.00 0.0
CH3CHOH +C2H5O =C2H5OH +CH3CHO 5.000E+13 0.00 0.0
----
----
---- Oxygen Adition (Tomado de C3 subsystem)
---- kcin=(1.000E12/0.0/0)
---- Ref 3, nota 4 kcin_fwrd=(5.000E+11/ 0.0/-4.6)
---- Ref 32, nota 5 kcin_back=(3.240E+17/-1.0/125.527)
CH2CH2OH+O2 =OOC2OH 1.000E+12 0.00 0.0
----
---- Decomposition (Tomado de C3H5O2 Reactions)
---- R-12 �eta Scission for R-O@ -
---- Uncertainty = 3.16 kcin=(6.310E+13/0.00/81.56)
---- Ref 32, 5 kcin=(1.000E+16/0.0/104.6)
OOC2OH =CH2O +CH2O +OH 1.000E+16 0.00 50.60
----
----
************************************************************************
**** 7. C2H5 REACTIONS
************************************************************************
----
---- R7 ADDITION OF MOLECULAR OXYGEN -
---- 28b
---- C2H5 +O2 >C2H5O2 2.600E+12 0.0 0.0
---- INVERSE: R7 ADDITION OF MOLECULAR OXYGEN -
---- C2H5O2 >C2H5 +O2 4.300E+03 3.76 120.0
----
---- Wagner, A.F.; Slagle, I.R.; Sarzynski, D.; Gutman, D. Experimental and theoretical studies
---- of the C2H5 + O2 reaction kinetics Journal: J. Phys. Chem. vol94 p.1853 1990
---- (300-1000K) (0.01-10.13Bar) (1.4xE+02/(T/298 K)^(-9.85)/162964)
----
---- Kback:
---- kcin_o =(1.981E+50/-9.85/162.964) [1.400E+02/(T/298)^(-9.85)/162.964] [cm3/molecule_s/(J/mole)]
---- kcin_inf =(6.347E+17/-0.84/143.009) [5.300E+15/(T/298)^(-0.84)/143.009] [(s-1)_(J/mole)]
---- C2H5O2 >C2H5 +O2 6.347E+17 -0.84 143.09
---- LOW 3.289E+26 -9.85 162.96
---- TROE 0.000 0000.0 00.0 0.0
----
---- Kfwd:
---- kcin_o =(7.101E+42/-8.24/17.87) [8.020x10-26/(T/298 K)^-8.24/17876 [cm6/molecule2_s/(J/mole)/RT]
---- kcin_inf =(2.240E+10/0.77/2.386) [2.990x10-12/(T/298 K)^0.770/2386] [cm3/molecule_s/(J/mole)/RT]
---- C2H5 +O2 >C2H5O2 2.240E+10 0.77 2.386
----
---- C2H5 +O2 +M(1) =C2H5O2 +M(1) 2.240E+10 0.77 2.386
---- LOW 7.101E+42 -8.24 17.87
---- TROE 0.000 0000.0 00.0 0.0
----
---- Bozzelli, J.W.; Dean, A.M. Chemical activation analysis of the reaction of C2H5 with O2
---- J. Phys. Chem. vol.94. p.3313. 1990. (250-1200K)(0 - 1.01Bar)
---- kcin=(2.002E+42/-10.30/25.442) [ 1.09x10-7 (cm3/molecule s) / (T/298 K)^(-10.30) / 25442 ] (J/mole)/RT
C2H5 +O2 =C2H5O2 2.002E+42-10.3 25.442
----
---- Robert S. Tranter, Raghu Sivaramakrishnan, Kenneth Brezinsky Mark Allendorf.
---- Hifh pressure, high temperature shock tubes studies of ethane pyrolysis and oxidation.
---- PCCP. 2002, vol4, 2001-2010. Experimental!!
----
---- C2H5 +O2 +M(1) =C2H5O2 +M(1) 2.020E+10 0.98 -0.265
---- LOW 8.490E+29 -4.29 0.919
---- TROE 0.103 601.0 00.0 0.0
-----
************************************************************************
**** 8. C2H5O REACTIONS
************************************************************************
----
************************************************************************
**** 9. C2H5O2 REACTIONS
************************************************************************
---- - R8 INTERNAL H ABSTRACTION -
---- 21b
C2H5O2 >2C2OOH1 2.080E+12 0.0 138.0
---- - INVERSE: R8 INTERNAL H ABSTRACTION -
2C2OOH1 >C2H5O2 8.500E+09-0.0988 69.5
----
---- - C1 FORMATION OF O-HETEROCYKLEN -
2C2OOH1 =OXIRAN +OH 1.300E+10 0.0 65.5
----
---- RANZI 1994 (EA=ORIGINAL/1000)
---- No encuentro la referencia
---- C2H5O2 +CO >C2H5O +CO2 1.000E+14 0.0 24.0
----
----
---- Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T.,
---- Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J. Summary table of evaluated kinetic data
---- for combustion modeling: Supplement 1. Combust. Flame, 1994, v.98, pp.59-79.
---- k = 2.000E+13 exp(- 4750.0 cal/mol /RT) cm3/mol s [1]
C2H5OOH +O =OH +C2H5O2 2.000E+13 0.0 19.85
----
----
---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- Koriginal=(4.640E+10/0.0/-10.8) from 27b
---- C2H5O2 +HO2 >C2H5OOH +O2 4.640E+10 0.0 -10.800
---- C2H5OOH +O2 >C2H5O2 +HO2 2.050E+10-0.0893 126.0
----
---- NIST 2000. Atkinson, R.; Baulch, D. 1997 (Bibliografia)
---- C2H5O2 +HO2 >C2H5OOH +O2 1.632E+11 0.0 -8.314
----
---- Fenter, F.F.; Catoire, V.; Lesclaux, R.; Lightfoot, P.D
---- The ethylperoxy radical: its ultraviolet spectrum, self-reaction, and reaction with HO2,
---- each studied as a function of temperature.
---- J. Phys. Chem., vol.97, p.3530 - 3538, 1993 (Experimental, 1.01Bar, 248-480K)
---- kcin=(9.697E+10/0.0/-10.476)
C2H5O2 +HO2 =C2H5OOH +O2 9.697E+10 0.0 -10.476
----
---- NIST 2000. Atkinson, R.; Baulch, D. 1997 (Bibliografia)
---- C2H5O2 +HO2 =C2H5OOH +O2 1.632E+11 0.0 -8.314
----
---- Wilk, R.D., Cernansky, N.P., Pitz, W.J., and Westbrook, C.K.
---- Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study.
---- Combust. Flame, 1989, v. 77, pp. 145-170
---- kcin=(1.150E+11/0/41.8)
---- 22b
C2H5O2 +CH3CHO >C2H5OOH +CH3CO 1.000E+12 0.0 42.0
C2H5O2 +CH2O >C2H5OOH +CHO 1.000E+12 0.0 42.0
C2H5O2 +C2H5CHO >C2H5OOH +C2H5CO 1.000E+12 0.0 42.0
----
---- - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
C2H5OOH +CHO >C2H5O2 +CH2O 2.170E+06 1.01 0.688
C2H5OOH +CH3CO >C2H5O2 +CH3CHO 9.260E+05 1.22 17.3
C2H5OOH +C2H5CO >C2H5O2 +C2H5CHO 1.140E+09 0.267 22.3
----
----
---- Koriginal_MN_F=(0.165E+12/0.0/0.00)
---- koriginal_MN_B=(1.000E+04/0.0/0.00)
---- NIST 2000: Villenave, E.; Lesclaux, R.
---- Kinetics of the cross reactions of CH3O2 and C2H5O2 radicals with
---- selected peroxy radicals. J. Phys. Chem, vol 100. p. 14372-14382. 1996.
---- Experimental 298K, 1.01 Bar.
C2H5O2 +CH3O2 =C2H5O +CH3O +O2 1.211E+11 0.0 0.00
----
---- koriginial_forw=(0.130E+12/0.0/0.0); kori_back=(0.100E+07/0.0/0.0)
---- NIST 2000: Bauer, D.; Crowley, J.N.; Moortgat, G.K.
---- The UV absorption spectrum of the ethylperoxy radical and
---- its self-reaction kinetics between 218 and 333 K;J. Photochem. Photobiol. A:
---- vol. 65. p.329-344, 1992. Experimental (298K, 0.08-0,2Bar)
C2H5O2 +C2H5O2 >C2H5O +C2H5O +O2 2.650E+10 0.0 0.00
C2H5O +C2H5O +O2 >C2H5O2 +C2H5O2 0.100E+07 0.0 0.00
----
---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- 25b
C2H5O2 +C4H10 >C2H5OOH +P-C4H9 1.680E+13 0.0 85.5
C2H5O2 +C4H10 >C2H5OOH +S-C4H9 1.120E+13 0.0 74.0
---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
C2H5OOH +P-C4H9 >C2H5O2 +C4H10 1.130E-12 6.76 -18.1
C2H5OOH +S-C4H9 >C2H5O2 +C4H10 4.440E-13 6.89 -15.2
----
************************************************************************
**** 10. C2H5OOH REACTIONS
************************************************************************
---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- 23b
---- C2H5OOH >C2H5O +OH 1.100E+16 0.0 182.0
---- - INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- C2H5O +OH >C2H5OOH 9.270E+25 -3.51 20.00
----
---- NIST 2000. CEC 94 Uncertainty=2.0, (400-800K)
C2H5OOH =C2H5O +OH 4.000E+15 0.0 179.6
************************************************************************
**** 11. C3H5O1 REACTIONS
****
************************************************************************
---- Ninguna sugerencia en NIST
---- @ H
---- | |
---- O=C-C-C-H
---- | | |
---- H H H
----
---- LT14 BETA SCISSSION FOR O=R@ -
---- No hay formadores de las siguientes dos especies:(se omiten)
---- 1-2C3O >CH3 +CH2CO 3.700E+13 0.0 120.0
---- 3-1C3O >C2H4 +CHO 3.700E+13 0.0 120.0
C2H5CO >CH3 +CH2CO 3.700E+13 0.0 120.0
----
3C2H4CHO>C2H4 +CHO 3.700E+13 0.0 120.0
CH3COCH2>CH3 +CH2CO 3.700E+13 0.0 120.0
---- LT16 SCISSION FROM ACETYLRADICAL -
---- korig=(1.580E+13/0.0/72.0); korig_back=(1.580E+11/0.0/25.00)
---- Watkins, K. W.; Thompson, W. W. (1973) Addition of Ethyl Radicals to
---- Carbon Monoxide. Kinetic and Thermochemical. Properties of the Propionyl Radical.
---- Int. J. Chem. Kinet. 5, 791. (0.01-0.35Bar; 238-278K)
C2H5CO =C2H5 +CO 5.890E+12 0.0 60.3
************************************************************************
**** 12. C3H5O2 REACTIONS
************************************************************************
---- Jenkin, M.E.; Cox, R.A.; Emrich, M.; Moortgat, G.K
---- Mechanisms of the Cl-atom-initiated oxidation of acetone and hydroxyacetone in air
---- J. Chem. Soc. Faraday Trans. vol.89. p.2983-2991. 1993. 298K. 0.93Bar
---- kcin=(1.600E+06/0/0) (1-OC3O2->CH3CO+CH2O)
---- H
---- |
---- H H-C-H
---- | |
---- @-O-C----C=O
---- |
---- H
---- - R17 BETA SCISSSION for O=R-O@ -
1-OC3O2 >CH3CO +CH2O 0.300E+15 0.0 212.55
3-OC3O1 >CH2CHO +CH2O 0.300E+15 0.0 212.55
2-OC3O1 >CH3CHO +CHO 0.300E+15 0.0 212.55
---- - INVERSE: R17 BETA SCISSSION for O=R-O@ -
CH3CO +CH2O >1-OC3O2 0.793E+06 1.48 196.65
CH2CHO +CH2O >3-OC3O1 0.793E+06 1.48 196.65
CH3CHO +CHO >2-OC3O1 0.793E+06 1.48 196.65
************************************************************************
**** 13. C3H6O REACTIONS
************************************************************************
******************************************
**** 01. C3H6O Consumption
******************************************
---- ----O----
---- | | => OXETAN
---- C---C---C
----
---- Decomposition
---- korig_fwd=(2.565E+16/0.0/263.01); kcin_back=(5.130E+15/0.0/264.00)
---- NIST 2000: Zalotai, L.; Hunyadi-Zoltan, Zs.; Berces, T.; Marta, F.
---- Kinetics of gas phase decomposition of oxetan and oxetan-2,2-d2
---- Int. J. Chem. Kinet. vol.15; p.505;1985. Uncerta=2.04
OXETAN >C2H4 +CH2O 2.630E+15 0.0 259.41
---- Inverse Oxetan
---- 32b: Clarke, M.J.; Holbrook, K.A.
---- Thermolysis of 2-Ethyloxetan. J. Chem. Soc. Faraday Trans. 1:
---- vol.73. p.890. 1977. (699-752K; 0.0, 0.04Bar). Unceertaninty=1.91
CH2O +C2H4 >OXETAN 9.080E+28 -5.28 278.0
----
---- H atom abstraction
---- Duke, M.G.; Holbrook, K.A
---- Reactions of methyl radicals with oxetan, 2-methyloxetan and 2,4-dimethyloxetan
---- J. Chem. Soc. Faraday Trans. 1: vol76, p.1232, 1980. 373 - 465K; 0.07-0.1Bar.
---- Uncertainty=1.55.
OXETAN +O2 =2C3H5OCY+HO2 4.000E+13 0.0 257.32
OXETAN +H =2C3H5OCY+H2 2.000E+13 0.0 34.73
OXETAN +O =2C3H5OCY+OH 1.910E+12 0.0 21.97
OXETAN +OH =2C3H5OCY+H2O 4.100E+06 2.0 -7.02
OXETAN +HO2 =2C3H5OCY+H2O2 2.900E+04 2.6 58.20
OXETAN +CH3 =2C3H5OCY+CH4 1.950E+11 0.0 35.23
************************************************************************
**** 14. C3H6O3 REACTIONS
************************************************************************
---- H
---- |
---- H-C-OOH
---- |
---- CH3-C=O
----
---- korig=(0.400E+16/0.0/125.52)
---- NIST 2000, Devush, S.S.; Prisyazhnyuk, Z.P.; Koval'skaya, A.M.
---- Kinetics of the thermal gas phase decomposition of C1-C4 organic peracids
---- Kinet. Catal. vol 24.p.1098, 1983. (403-513K; 1.1 Bar) Uncertainty=5.0
---- kcin=(1.35E+13/0.0/138.852, +/-13.88KJ)
---- - R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
2OC3HP1 >1-OC3O2 +OH 0.400E+16 0.0 125.52
1OC3HP3 >3-OC3O1 +OH 0.400E+16 0.0 125.52
1OC3HP2 >2-OC3O1 +OH 0.400E+16 0.0 125.52
---- - INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
1-OC3O2 +OH >2OC3HP1 0.324E+09 0.991 -58.58
3-OC3O1 +OH >1OC3HP3 0.324E+09 0.991 -58.58
2-OC3O1 +OH >1OC3HP2 0.324E+09 0.991 -58.58
************************************************************************
**** 15. C3H7 REACTIONS
************************************************************************
---- LT16 SCISSION FROM ACETYLRADICAL -
---- korig_f=(1.580E+13/0.0/72.0)
---- Cadman, P.; Dodwell, C.; Trotman-Dickenson, A.F.; White, A.J.
---- The kinetics of hydrogen abstraction by difluoroamino-radicals,
---- from propionaldehyde, and n- and iso-butyraldehyde, and their acyl radical decompositions.
---- J. Chem. Soc. A:. p.2371; 1970. Uncertainty=1.1; (353-423K; 0,0-0,04Bar)
C3H7CO =N-C3H7 +CO 3.160E+12 0.0 39.82
---- C3H7CO >N-C3H7 +CO 1.580E+13 0.0 72.00
---- INVERSE: LT16 SCISSION FROM ACETYLRADICAL -
---- N-C3H7 +CO >C3H7CO 1.580E+11 0.0 25.0
----
---- R7 ADDITION OF MOLECULAR OXYGEN -
---- Atkinson, Baulch.. 1994.(I-C3H7+O2>I-C3H7O2) kcin=(6.62E+12/0/0)
---- Slagle, I.R.; Park 1985.(N-C3H7+O2>N-C3H7O2) kcin=(3.40E+12/0/0)
---- NIST 2000: Ruiz, R.P.; Bayes, K.D.
---- Rates of reaction of propyl radicals with molecular oxygen.
---- J. Phys. Chem. vol. 88. p.2592. 1984. (298K; 0.01Bar)
I-C3H7 +O2 =I-C3H7O2 8.500E+12 0.0 0.0
N-C3H7 +O2 =N-C3H7O2 3.300E+12 0.0 0.0
---- INVERSE: R7 ADDITION OF MOLECULAR OXYGEN -
---- I-C3H7O2>I-C3H7 +O2 1.550E-04 5.75 119.0
---- N-C3H7O2>N-C3H7 +O2 2.060E-05 6.07 119.0
---- Tsang
---- N-C3H7 +O2 =N-C3H7O2 1.630E+19-2.7 0.0
---- I-C3H7 +O2 =I-C3H7O2 8.500E+12 0.0 0.0
---- Atkinson
---- N-C3H7 +O2 =N-C3H7O2 3.400E+12 0.0 0.0
---- I-C3H7 +O2 =I-C3H7O2 6.620E+12 0.0 0.0
----
---- NIST 2000:Reacciones entre radicales
---- Tsang 1988.
---- Uncertainty=3.0
N-C3H7 +C2H3 =C2H2 +C3H8 1.211E+12 0.0 0.0
************************************************************************
**** 16. C3H7O REACTIONS
************************************************************************
---- korig_N=(0.170E+14/0.0/74.48)
---- korig_I=(0.150E+14/0.0/61.92)
---- - R12 BETA SCISSSION for R-O@ -
---- NIST 2000: Baldwin 1977. Uncertainty=3.16
N-C3H7O =C2H5 +CH2O 6.310E+13 0.0 81.56
---- NIST 2000: Baldwin 1977. The Gas-Phase Decomposition of Alkoxy Radicals
---- Int. J. Chem. Kinet. vol. 11. p977. 1979. (1.01Bar; 393-433K) Measure!! kcin=(3.98E+14/0.0/72.003)
I-C3H7O =CH3CHO +CH3 3.980E+14 0.0 72.00
---- - INVERSE R12 BETA SCISSSION for R-O@ -
----C2H5 +CH2O >N-C3H7O 0.200E+06 1.0 41.09
----CH3CHO +CH3 >I-C3H7O 0.200E+06 1.0 41.09
----
---- korig=(1.750E+11/0.0/7.31)
---- Heicklen, J.The decomposition of alkyl nitrites and the reactions of alkoxyl radicals
---- Adv. Photochem.vol.14. p 177. 1988. 250-361K. Uncertainty=1.3
N-C3H7O +O2 =C2H5CHO +HO2 1.951E+11 0.0 8.281
----C2H5CHO +HO2 >N-C3H7O +O2 7.080E+03 1.94 134.0
----
---- NIST 2000:Balla, R.J.; Nelson, H.H.; McDonald, J.R (ACETONA!!!)
---- Kinetics of the reactions of isopropoxy radicals with NO, NO2, and O2
---- Chem. Phys. vol.99. p.323. 1985. (298-383K, 0.07Bar).
I-C3H7O +O2 =CH3COCH3+HO2 9.095E+09 0.0 1.630
----
---- H-Atom Abstraction, decomposition
---- NIST 2000: Batt, L.
---- The Gas-Phase Decomposition of Alkoxy Radicals. Int. J. Chem. Kinet
---- vol.11, p.977, 1979. 1.01Bar, (393-433K) Uncertainty = 3.16 Measure!!
I-C3H7O =CH3COCH3+H 2.000E+14 0.0 89.79
----
---- Decomposition
----
---- No hay datos de esta reaccion se saca !!!
---- N-C3H7O >C2H5CHO +H 0.100E+15 0.0 0.00
---- C2H5CHO +H >N-C3H7O 0.104E+13 -0.146 -62.76
************************************************************************
**** 17. C3H7O2 REACTIONS
************************************************************************
---- Nota de Bibliografia:
---- R.D. Wilk, N.P. Cernansky and R.S. Cohen. "The Oxidation of Propane at Low and Transition Temperatures"
---- Combustion Sci and Technology. 1986 Vol 49 pp 41-78
---- Proceso de Isomerization:
---- C3H7O2 -> C3H6OOH
---- C3H6OOH -> C3H6O + OH Aca tengo formacion de Oxido de Propeno, en los exp.1o. tengo formacion de
---- propeno y luego el oxido, luego este paso no parece muy importante cuando se considera solo el propano como
---- combustible, y solo debe considerarse cuando el combustible es un alcano superior.
---- Debo incluir este paso en mi mecanismo, pues es uno de los principlaes productos !!!!
---- C3H6OOH + O2 -> O2C3H6OOH
---- O2C3H6OOH -> HO2C3H5O + OH
---- HO2C3H5O -> C3H5O2 + OH
----
----
---- - R8 INTERNAL H ABSTRACTION -
---- 21b
I-C3H7O2>1C3OOH2 4.160E+12 0.0 138.0
N-C3H7O2>3C3OOH1 2.600E+11 0.0 110.0
N-C3H7O2>2C3OOH1 1.390E+12 0.0 118.0
---- - INVERSE: R8 INTERNAL H ABSTRACTION -
1C3OOH2 >I-C3H7O2 2.220E+10-0.138 69.6
2C3OOH1 >N-C3H7O2 2.980E+09 0.0447 63.8
3C3OOH1 >N-C3H7O2 0.100E+14 0.0 167.36
----
---- - C1 FORMATION OF O-HETEROCYKLEN -
---- ---O--
---- | | => 2MOXI => Epoxypropane => Methyloxirane => Propylene Oxide
---- CH2---CH--CH3
----
---- 21
1C3OOH2 =2MOXI +OH 1.300E+10 0.0 65.5
2C3OOH1 =2MOXI +OH 1.300E+10 0.0 65.5
3C3OOH1 =OXETAN +OH 1.300E+10 0.0 62.9
---- - LT6 FORMATION OF C-fuel-ALKEN -
1C3OOH2 =C3H6 +HO2 1.000E+09 0.0 31.4
2C3OOH1 =C3H6 +HO2 1.000E+09 0.0 31.4
----
---- - FORMATION OF O-HETEROCYKLEN -
---- NIST 2000: Grigoryan, R.R.; Arsentiev, S.D.; Mantashyan, A.A
---- Propylene epoxidation in the gas-phase oxidation of propane-propylene mixtures
---- React. Kinet. Catal. Lett. vol 21, p.347. 1982.
---- 633K; 0.28-0.36 BAR
N-C3H7O2+C3H6 =N-C3H7O +2MOXI 1.698E+07 0.0 0.0
---- NIST:2000. Sway, M.I.; Waddington, D.J.
---- Reactions of oxygenated radicals in the gas phase. Part 12.
---- The reactions of isopropylperoxy radical and alkenes
---- J. Chem. Soc. Perkin Trans. 2. p.139, 1983
---- 303-408K, 1 Bar
I-C3H7O2+C3H6 =I-C3H7O +2MOXI 8.321E+11 0.0 67.7
----
---- 11 Nov 2004
---- NIST
---- Lifshitz, A.; Tamburu, C. Isomerization and decomposition of propylene oxide.
---- Studies with a single-pulse shock tube. J. Phys. Chem. Vol:98; 1161-1170 1994
---- 835-1160K ; 2.03 Bar.
---- kcin1=(2.45x1013 (s-1) e-58.42 (kcal/mole)/RT)
---- kcin2=(2.45x1013 (s-1) e-58.82 (kcal/mole)/RT)
---- kcin3=(1.82x1014 (s-1) e-58.42 (kcal/mole)/RT)
2MOXI =CHO +C2H5 2.450E+13 0.0 244.19
2MOXI =CH3 +CH2CHO 2.450E+13 0.0 245.86
2MOXI =C2H5CHO 1.820E+14 0.0 244.19
----
----
**** INICIO DE SECCION 1
---- Todas estas reacciones funcionan correctamente!!!!
----
---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- 22b, nur HO2 27b
---- NIST 2000: Wilk, R.D., Cernansky, N.P., Pitz, W.J., and Westbrook, C.K.
---- Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study.
---- Combust. Flame, 1989, v. 77, pp. 145-1700
I-C3H7O2+HO2 >IC3H7OOH+O2 4.640E+10 0.0 -10.8
I-C3H7O2+CH2O >IC3H7OOH+CHO 1.000E+12 0.0 42.0
I-C3H7O2+CH3CHO >IC3H7OOH+CH3CO 1.000E+12 0.0 42.0
I-C3H7O2+C2H5CHO >IC3H7OOH+C2H5CO 1.000E+12 0.0 42.0
----
I-C3H7O2+N-C3H7 =I-C3H7O +N-C3H7O 3.800E+12 0.0 -5.06
I-C3H7O2+I-C3H7 =I-C3H7O +I-C3H7O 3.800E+12 0.0 -5.06
I-C3H7O2+CH3 =I-C3H7O +CH3O 3.800E+12 0.0 -5.06
I-C3H7O2+C3H6 =IC3H7OOH+C3H5 3.200E+11 0.0 62.28
---- Esta estaba habilitada
I-C3H7O2+CH4 =IC3H7OOH+CH3 1.140E+13 0.0 85.52
---- Hasta aca la habilitada
I-C3H7O2+CH3OH =IC3H7OOH+CH2OH 6.300E+12 0.0 80.92
---- Konnov 1999
I-C3H7O2+C2H4 =IC3H7OOH+C2H3 7.100E+11 0.0 104.50
----
N-C3H7O2+HO2 >NC3H7OOH+O2 4.640E+10 0.0 -10.8
N-C3H7O2+CH2O >NC3H7OOH+CHO 1.000E+12 0.0 42.0
N-C3H7O2+CH3CHO >NC3H7OOH+CH3CO 1.000E+12 0.0 42.0
N-C3H7O2+C2H5CHO >NC3H7OOH+C2H5CO 1.000E+12 0.0 42.0
----
N-C3H7O2+N-C3H7 =N-C3H7O +N-C3H7O 3.800E+12 0.0 -5.06
N-C3H7O2+I-C3H7 =N-C3H7O +I-C3H7O 3.800E+12 0.0 -5.06
N-C3H7O2+CH3 =N-C3H7O +CH3O 3.800E+12 0.0 -5.06
N-C3H7O2+C3H6 =NC3H7OOH+C3H5 3.200E+11 0.0 62.28
N-C3H7O2+CH4 =NC3H7OOH+CH3 1.140E+13 0.0 85.52
N-C3H7O2+CH3OH =NC3H7OOH+CH2OH 6.300E+12 0.0 80.92
---- Konnov 1999
N-C3H7O2+C2H4 >NC3H7OOH+C2H3 7.100E+11 0.0 104.50
----
---- Estas reacciones corresponden a las inversas originales !!
---- - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
IC3H7OOH+O2 >I-C3H7O2+HO2 2.540E+10-0.121 126.0
IC3H7OOH+CHO >I-C3H7O2+CH2O 2.680E+06 0.982 0.785
IC3H7OOH+CH3CO >I-C3H7O2+CH3CHO 1.150E+06 1.18 17.4
IC3H7OOH+C2H5CO >I-C3H7O2+C2H5CHO 1.410E+09 0.235 22.4
----
NC3H7OOH+O2 >N-C3H7O2+HO2 2.050E+10-0.0893 126.0
NC3H7OOH+CHO >N-C3H7O2+CH2O 2.170E+06 1.01 0.688
NC3H7OOH+CH3CO >N-C3H7O2+CH3CHO 9.260E+05 1.22 17.3
NC3H7OOH+C2H5CO >N-C3H7O2+C2H5CHO 1.410E+09 0.267 22.3
----
----
**** FINAL DE SECCION 1
----
---- - R13 ADDITION OF MOLECULAR OXYGEN -
----
---- H OOH H
---- | | |
---- @--O--O--C--C--C--H => 1OO3OOH2
---- | | |
---- H H H
----
2C3OOH1 +O2 >2OO3OOH1 0.100E+13 0.0 0.00
3C3OOH1 +O2 >3OO3OOH1 0.100E+13 0.0 0.00
1C3OOH2 +O2 >1OO3OOH2 0.100E+13 0.0 0.00
----
---- INVERSE: R13 ADDITION OF MOLECULAR OXYGEN -
---- 1OO3OOH2>1C3OOH2 +O2 0.217E+15 -1.2 122.17
---- 2OO3OOH1>3C3OOH1 +O2 0.217E+15 -1.2 122.17
---- 3OO3OOH1>2C3OOH1 +O2 0.217E+15 -1.2 122.17
----
----
---- Aplico las igualdad
---- Decomposition
N-C3H7O2=CH2O +C2H5O 0.100E+10 0.0 83.68
N-C3H7O2=C2H5CHO +OH 0.100E+10 0.0 83.68
I-C3H7O2=CH3COCH3+OH 0.100E+10 0.0 83.68
I-C3H7O2=CH2O +C2H5O 0.100E+10 0.0 83.68
---- Inverse Decomposition
----(*)CH2O +C2H5O >N-C3H7O2 0.100E+01 0.0 0.00
----(*)C2H5CHO +OH >N-C3H7O2 0.331E+02 1.37 199.58
----(*)CH3COCH3+OH >I-C3H7O2 0.182E+01 17.1 212.97
----(*)CH2O +C2H5O >I-C3H7O2 1.000E+00 0.0 0.00
----
**** INICIO SECCION 2
---- Estas reacciones funcoinan correctamente !!!
----
---- Decomposition
---- korigin_f=(0.130E+12/0.0/0.00)
---- NIST 2000: Adachi, H.; Basco, N.
---- Spectra of Propylperoxy Radicals and Rate Constants for Mutual Interaction
---- Int. J. Chem. Kinet.vol 14. p 1125 1982 . 298K 0.49 Bar kcin=(1.999E+11/0/0) Experimental
---- NIST 2000: Atkinson 1997
---- kcin=(1.813E+11/0.0/0.00)
N-C3H7O2+N-C3H7O2>N-C3H7O +N-C3H7O +O2 0.130E+12 0.0 0.00
N-C3H7O2+I-C3H7O2>N-C3H7O +I-C3H7O +O2 0.100E+12 0.0 0.00
N-C3H7O2+C2H5O2 >N-C3H7O +C2H5O +O2 0.130E+12 0.0 0.00
N-C3H7O2+CH3O2 >N-C3H7O +CH3O +O2 0.165E+12 0.0 0.00
---- Inverse Decomposition
N-C3H7O +N-C3H7O +O2 >N-C3H7O2+N-C3H7O2 0.381E+01 2.61 1.57
N-C3H7O +I-C3H7O +O2 >N-C3H7O2+I-C3H7O2 1.000E+00 0.0 0.00
N-C3H7O +C2H5O +O2 >N-C3H7O2+C2H5O2 1.000E+00 0.0 0.00
N-C3H7O +CH3O +O2 >N-C3H7O2+CH3O2 1.000E+00 0.0 0.00
----
**** FINAL SECCION 2
----
---- Decomposition
---- NIST 2000: Wallington, T.J.; Dagaut, P.; Kurylo, M.J.
---- Ultraviolet absorption cross sections and reaction kinetics and mechanisms
---- for peroxy radicals in the gas phase. Chem. Rev.vol. 92. p.667-710. 1992.
---- kcin-(1.391E+12/0.0/21.28)
I-C3H7O2+I-C3H7O2>I-C3H7O +I-C3H7O +O2 0.700E+11 0.0 0.00
---- NIST 2000: Atkinson 1997
---- kcin(0.100E+12/0.0/0.0)
I-C3H7O2+C2H5O2 >I-C3H7O +C2H5O +O2 0.100E+12 0.0 0.00
---- NIST 2000: Alcock, W.G.; Mile, B.
---- The Gas-Phase Reactions of Alkylperoxy Radicals Generated by a Photochemical Technique
---- CandF vol. 24, p.125, 1975. 373K, 0.06-0.67 Bar.
---- I-C3H7O2+CH3O2>Products. (100% this channel!)
---- kcin=(6.204E+11/0.0/0.0)
I-C3H7O2+CH3O2 >I-C3H7O +CH3O +O2 0.135E+12 0.0 0.00
----
---- Inverse Decomposition
I-C3H7O +I-C3H7O +O2 >I-C3H7O2+I-C3H7O2 0.200E+04 1.66 33.35
I-C3H7O +C2H5O +O2 >I-C3H7O2+C2H5O2 1.000E+04 0.0 0.00
I-C3H7O +CH3O +O2 >I-C3H7O2+CH3O2 1.000E+04 0.0 0.00
----
----
**** INICIO SECCION 3
---- Todas las reacciones funcionan !!!
---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- Konnov, 1999:
---- kcini1=(6.03E+12/0/81.01)
---- kcini2=(1.99E+12/0/71.27)
---- kcini3=(6.03E+12/0/81.01)
---- kcini4=(1.99E+12/0/71.27)
---- Las dos primeras estaban
I-C3H7O2+C3H8 >IC3H7OOH+N-C3H7 6.000E+12 0.0 58.6
I-C3H7O2+C3H8 >IC3H7OOH+I-C3H7 2.000E+12 0.0 46.101
N-C3H7O2+C3H8 >NC3H7OOH+N-C3H7 6.000E+12 0.0 58.6
N-C3H7O2+C3H8 >NC3H7OOH+I-C3H7 2.000E+12 0.0 46.101
---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
IC3H7OOH+N-C3H7 >I-C3H7O2+C3H8 6.000E+12 0.0 58.6
IC3H7OOH+I-C3H7 >I-C3H7O2+C3H8 2.000E+12 0.0 46.101
NC3H7OOH+N-C3H7 >N-C3H7O2+C3H8 6.000E+12 0.0 58.6
NC3H7OOH+I-C3H7 >N-C3H7O2+C3H8 2.000E+12 0.0 46.101
-----
**** FINAL SECCION 3
----
----
************************************************************************
**** 18. C3H8O2 REACTIONS
************************************************************************
---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- Kcin_orig_1:(0.830E+15/0.0/179.91)
---- Kcin_orig_2:(0.830E+15/0.0/179.91)
---- Konnov 1999 :
---- kcin1= (4.000E+15/0/179.7)
---- kcin2= (4.000E+15/0/179.7)
---- Kirk, A.D.; Knox, J.H.
---- The pyrolysis of alkyl hydroperoxides in the gas phase
---- Trans. Faraday Soc. vol. 56; p.1296-1303. 1960 Experimental
---- 553 - 653 K. Uncertainty=2.0.
---- kcin=(1.580E+15/0/167.121)
---- Se mantienen al originial.
---- 24 th.
---- 24th. Symposium (International) on Combustion, 1992. p.637-643
---- The pyrolysis of organic hydroperoxides (ROOH)
---- K.A. Sahetchian, et al.
---- 23b
NC3H7OOH=N-C3H7O +OH 1.100E+16 0.0 182.0
IC3H7OOH=I-C3H7O +OH 0.830E+15 0.0 179.91
----
---- Inversas para estas nuevas reacciones !!!!
---- INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- N-C3H7O +OH >NC3H7OOH 6.830E+16 -0.779 4.81
---- I-C3H7O +OH >IC3H7OOH 1.000E+11 0.0 0.00000042
----
************************************************************************
**** 19. C3H7O4 REACTIONS
************************************************************************
----
----
---- H OOH H
---- | | |
---- H--O--O--C--C--C--H => 1-2C3HP
---- | | |
---- H @ H
----
----
---- - R14 INTERNAL H ABSTRACTION -
1OO3OOH2=1-2C3HP 1.000E+11 0.0 56.43
3OO3OOH1=1-3C3HP 2.000E+11 0.0 46.398
2OO3OOH1=1-2C3HP 2.000E+11 0.0 71.06
---- - INVERSE: R14 INTERNAL H ABSTRACTION -
---- 1-2C3HP >1OO3OOH2 1.000E+11 0.0 43.4
---- 1-3C3HP >3OO3OOH1 2.000E+11 0.0 27.6
---- 1-2C3HP >2OO3OOH1 2.000E+11 0.0 52.3
---- - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS -
1-2C3HP >2OC3HP1 +OH 1.000E+09 0.0 31.4
1-3C3HP >1OC3HP3 +OH 1.000E+09 0.0 31.4
1-2C3HP >1OC3HP2 +OH 1.000E+09 0.0 31.4
************************************************************************
**** 20. C3H7OOH REACTIONS
************************************************************************
---- Incluidas en C3H8O2 !!!!
******************************************
**** 22. C3H5O Reactions
******************************************
---- Thermal decomposition
2C3H5OCY =C2H4 +CHO 8.000E+10 0.0 146.44
---- Reactions with CH3
2C3H5OCY+CH3 =C2H4 +CH3CHO 1.000E+13 0.0 0.00
2C3H5OCY+CH3 =C3H6 +CH2O 2.000E+13 0.0 0.00
******************************************
************************************************************************
**** 23. C3H6O1 REACTIONS
************************************************************************
---- Ernst, J.; Spindler, K.; Wagner, H.Gg.
---- Untersuchungen zum Thermischen Zerfall von Acetaldehyd und Aceton
---- Ber. Bunsenges. Phys. Chem. vol.80.p.645, 1976. (1350-1659K; 0.2-73.99Bar)
---- 30b
CH3COCH3=CH2CO +CH4 2.610E+11 0.0 191.00
CH3COCH3=CO +C2H6 3.500E+14 0.0 174.00
CH3COCH3=CH3CO +CH3 2.700E+16 0.0 342.00
---- 31b
-----CH3CO +CH3 >CH3COCH3 2.250E+21 -2.60 191.00
-----CH2CO +CH4 >CH3COCH3 5.000E+18 -2.77 120.00
-----C2H6 +CO >CH3COCH3 5.810E+21 -2.68 171.00
----
---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
----26b
---- Kcin_orig_1=(1.000E+12/0.0/42.0)
---- kcin_orig_2=(2.000E+13/0.5/175.0)
---- NIST 2000, Baldwin, 1979
---- Rate constants for reactions of HO2 radicals with alkanes, aldehydes, and related compounds
C2H5CHO +HO2 =C2H5CO +H2O2 1.520E+09 0.0 0.0
---- Produce error numerico
----C2H5CHO +O2 =C2H5CO +HO2 8.070E+01 0.0 0.0
----
---- Atkinson, 1997.
C2H5CHO +OH =C2H5CO +H2O 1.210E+13 0.0 0.0
C2H5CHO +CH3O2 =C2H5CO +CH3O2H 1.000E+12 0.0 42.0
C2H5CHO +CH3 =C2H5CO +CH4 2.200E+11 0.0 48.6
---- NIST 2000: Pendiente, Singleton, D. L.; Irwin, R. S.; Cvetanovic, R. J. (1977)
---- Arrhenius Parameters for the Reactions of O(3P) Atoms with Several Aldehydes
---- and the Trend in Aldehydic C-H Bond Dissociation Energies.
---- J. Chem. 55, 3321. kcin=(5.680E+12/0/6.430)
C2H5CHO +H =C2H5CO +H2 9.380E+06 2.0 32.2
---- kcin_orig=(7.270E+05/2.4/23.01)
C2H5CHO +O =C2H5CO +OH 5.680E+12 0.0 6.437
----
---- NIST 2000 Peter, A., Acs, G., Horvath, I., Huhn, P.
---- Decomposition of propionaldehyde initiated by the thermal decomposition of azoethane.
---- Acta Chim. Hung. 108, 235 . 1981
C2H5CHO +C2H5 =C2H5CO +C2H6 5.000E+10 0.0 26.292
----
---- - INVERSE EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- 22b 36b 37b Corresponden a las cieticas originales
----C2H5CO +HO2 >C2H5CHO +O2 5.150E+10 0.856 18.6
----C2H5CO +CH3O2H >C2H5CHO +CH3O2 6.190E+02 2.48 35.3
----C2H5CO +H2O2 >C2H5CHO +HO2 3.020E+14 -0.92 517.0
----C2H5CO +H2O >C2H5CHO +OH 1.440E+14-0.38 141.0
----C2H5CO +CH4 >C2H5CHO +CH3 0.000E+00 0.0 00.0
----C2H5CO +OH >C2H5CHO +O 0.000E+00 0.0 00.0
----C2H5CO +H2 >C2H5CHO +H 0.000E+00 0.0 00.0
************************************************************************
**** 24. C4H7O1 REACTIONS
**** Raul: En el analisis de flujo no existen formadores. Se omiten
************************************************************************
----
---- H H H H
---- | | | |
---- O=C-C-C-C-H -> 1-3C4O
---- | | |
---- H H H
----
---- - LT14 BETA SCISSSION FOR O=R@ -
---- 1-3C4O >CH3CO +C2H4 3.700E+13 0.0 120.0
---- 1-2C4O >C2H5 +CH2CO 3.700E+13 0.0 120.0
---- 4-1C4O >CH2CHO +C2H4 3.700E+13 0.0 120.0
C3H7CO =C2H5 +CH2CO 3.700E+13 0.0 120.0
************************************************************************
**** 25. C4H7O2 REACTIONS
************************************************************************
----
----
---- H O H H
---- | | | |
---- O=C-C-C-C-H -> 2-OC4O1
---- | | |
---- H H H
----
----
---- - R17 BETA SCISSSION for O=R-O@ -
---- 4-OC4O2 =CH3COCH2+CH2O 2.000E+13 0.0 62.8
---- 1-OC4O2 =C2H5CO +CH2O 2.000E+13 0.0 62.8
---- 3-OC4O2 =CH3CHO +CH3CO 2.000E+13 0.0 62.8
---- 4-OC4O1 =3C2H4CHO+CH2O 2.000E+13 0.0 62.8
---- 3-OC4O1 =CH3CHO +CH2CHO 2.000E+13 0.0 62.8
---- 2-OC4O1 =C2H5CHO +CHO 2.000E+13 0.0 62.8
----
4-OC4O2 >CH3COCH2+CH2O 2.000E+13 0.0 62.8
1-OC4O2 >C2H5CO +CH2O 2.000E+13 0.0 62.8
3-OC4O2 >CH3CHO +CH3CO 2.000E+13 0.0 62.8
4-OC4O1 >3C2H4CHO+CH2O 2.000E+13 0.0 62.8
3-OC4O1 >CH3CHO +CH2CHO 2.000E+13 0.0 62.8
2-OC4O1 >C2H5CHO +CHO 2.000E+13 0.0 62.8
----
----
---- SE INCLUYEN LAS REACCIONES INVERSAS VERIFICAR PARAMETROS CINETICOS
---- INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
CH3COCH2+CH2O >4-OC4O2 2.000E+11 0.0 0.0
C2H5CO +CH2O >1-OC4O2 2.000E+11 0.0 0.0
CH3CHO +CH3CO >3-OC4O2 2.000E+11 0.0 0.0
3C2H4CHO+CH2O >4-OC4O1 2.000E+11 0.0 0.0
CH3CHO +CH2CHO >3-OC4O1 2.000E+11 0.0 0.0
C2H5CHO +CHO >2-OC4O1 2.000E+11 0.0 0.0
************************************************************************
**** 26. C4H8O REACTIONS
************************************************************************
----
---- H ---O--- H
---- | | | |
---- H-C--C-----C--C-H -> 2-3MOXI
---- | | | |
---- H H H H
----
----
---- NIST 2000: Zalotai, L.; Berces, T.; Marta, F.
---- Kinetics and energy transfer in the thermal decomposition of 2-methyloxetane
---- and 3-methyloxetane. J. Chem. Soc. Faraday Trans. 1:
---- vol.86, p.21.00. 1990. (660 - 760 K; 0.01-0.03 Bar). Uncer=1.32
---- 2-3MOXI analog dem Abbau von 2MOXI
2-3MOXI >C3H6 +CH2O 3.390E+14 0.0 249.43
----
---- ---O--- H H
---- | | | |
---- H-C-----C-----C--C-H -> 2EOXI "Ethyloxirane"
---- | | | |
---- H H H H
----
---- NIST 2000: Zalotai, L.; Berces, T.; Marta, F.
---- Kinetics and energy transfer in the thermal decomposition of 2-methyloxetane
---- and 3-methyloxetane. J. Chem. Soc. Faraday Trans. 1:
---- vol.86, p.21.00. 1990. (660 - 760 K; 0.01-0.03 Bar). Uncer=1.32
2EOXI >C3H6 +CH2O 3.390E+14 0.0 249.43
----
---- 11-11-2004 Salen !
---- NIST 2000: Flowers, M.C.; Penny, D.E.
---- Kinetics of the Thermal Gas-phase Decomposition of 1,2-Epoxybutane
---- J. Chem. Soc. Faraday Trans. 1. vol 71, p.851. 1975.
---- 2EOXI >NC3H7CHO 8.910E+13 0.0 238.40
---- 2EOXI >IC3H7CHO 2.090E+13 0.0 220.58
---- Articulo: 2EOXI >2C4H8O 1.150E+12 0.0 0.00
----
---- NIST, 2000: Wallington, T.J.; Kurylo, M.J.
---- Flash photolysis resonance fluorescence investigation of the gas-phase
---- reactions of OH radicals with a series of aliphatic ketones over the
---- temperature range 240-440 K. J. Phys. Chem. vol 91. 5050. 1987
2EOXI +OH >2EOXIYL +H2O 1.150E+12 0.0 0.00
----
---- MECANISMO DE NANCY, F. BATTIN-LECLERC AND P. BARBE 17 MARCH 1997
2EOXI +H >H2 +CH2CO +C2H5 2.7E+07 2.0 1.1960
2EOXI +HO2 >H2O2 +CH2CO +C2H5 1.2E+12 0.0 3.7081
2EOXI +C2H5 >C2H6 +CH2CO +C2H5 6.0E+11 0.0 2.6316
2EOXI +OH >H2O +CH2CO +C2H5 7.8E+06 2.0 -0.183
----
2EOXIYL >CH2CHO +C2H4 2.0E+13 0.0 28.699
----
---- (NIST Datenbank) ,
----
---- ------O------
---- | |
---- | H | H
---- | | | |
---- H-C-----C-----C--C-H -> 2MOXE
---- | | | |
---- H H H H
----
2MOXE >C3H6 +CH2O 3.390E+14 0.0 249.43
----
---- THF
---- -----O----
---- | |
---- C--C--C--C
---- NIST 2000: Schliephake, V.; Mix, K.-H.; Wagner, H.Gg
---- Investigations of the kinetics of the reactions of tetrahydrofurane,
---- tetrahydropyrane, cyclopentanone and cyclohexanone with atomic oxygen
---- Z. Phys. Chem. (Munich). vol. 150. p. 1. 1986. Experimentl (295-500K;0 Bar)
THF +O >THFYL +OH 7.829E+13 0.0 15.80
---- NIST: 2000, 86ATK2. Uncertainty=1.3
THF +OH >THFYL +H2O 9.040E+12 0.0 0.00
---- NIST 2000: Lifshitz, A.; Bidani, M.; Bidani, S.
---- Thermal reactions of cyclic ethers at high temperatures. 2.
---- Pyrolysis of tetrahydrofuran behind reflected shocks
---- J. Phys. Chem. vol. 90. p3422, 1982. (1070-1530K; 2.13-8.61Bar).
---- Para la 2 reaccion originalmente:(THF>C2H4+CH2OCH2) pasa a (THF>C2H4+OXIRAN)
THF >C3H6 +CH2O 8.240E+15 0.0 347.27
THF >C2H4 +OXIRAN 3.300E+16 0.0 347.27
----
---- Reacciones Nancy F. Battin, Leclerc and P. Barbe 17 march 1997
---- Methathesis
THF +H >H2 +THFYL 2.700E+07 2.0 5.00
---- Radical Decomposition
THFYL >CH2CHO +C2H4 2.0E+13 0.0 164.26
----
************************************************************************
**** 27. C4H8O3 REACTIONS
************************************************************************
----
----
---- H OOH H H
---- | | | |
---- O=C---C---C--C-H -> 1OC4HP2
---- | | | |
---- H H H H
----
----
---- - R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
2OC4HP4 =4-OC4O2 +OH 8.400E+14 0.0 180.1
2OC4HP1 =1-OC4O2 +OH 8.400E+14 0.0 180.1
2OC4HP3 =3-OC4O2 +OH 8.400E+14 0.0 180.1
1OC4HP4 =4-OC4O1 +OH 8.400E+14 0.0 180.1
1OC4HP3 =3-OC4O1 +OH 8.400E+14 0.0 180.1
1OC4HP2 =2-OC4O1 +OH 8.400E+14 0.0 180.1
---- - INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H -
---- 4-OC4O2 +OH >2OC4HP4 1.000E+11 0.0 0.0
---- 1-OC4O2 +OH >2OC4HP1 1.000E+11 0.0 0.0
---- 3-OC4O2 +OH >2OC4HP3 1.000E+11 0.0 0.0
---- 4-OC4O1 +OH >1OC4HP4 1.000E+11 0.0 0.0
---- 3-OC4O1 +OH >1OC4HP3 1.000E+11 0.0 0.0
---- 2-OC4O1 +OH >1OC4HP2 1.000E+11 0.0 0.0
************************************************************************
**** 28. C4H9 REACTIONS
************************************************************************
---- 20b
---- Lenhardt, T.M.; McDade, C.E.; Bayes, K.D.
---- Rates of Reaction of Butyl Radicals with Molecular Oxygen
---- J. Chem. Phys. vol72. p.304. 1980. (298K; 0-0.01Bar).
---- - R7 ADDITION OF MOLECULAR OXYGEN -
---- 20b
S-C4H9 +O2 =S-C4H9O2 1.000E+13 0.0 0.0
P-C4H9 +O2 =P-C4H9O2 4.500E+12 0.0 0.0
---- - INVERSE: R7 ADDITION OF MOLECULAR OXYGEN -
---- S-C4H9O2>S-C4H9 +O2 5.270E+10 1.92 136.0
---- P-C4H9O2>P-C4H9 +O2 4.710E+08 2.40 131.0
----
---- RAUL= NECESITO SABER QUE HACER CON I-C4H9O2 AND T-C4H9O2
---- NIST 2000: Tsang 1990. Uncertainty=3.0
---- I-C4H9 +O2 =I-C4H9O2 1.630E+19-2.7 0.0
---- NIST 2000: Dilger, H.; Stolmar, M.; Tregenna-Piggott, P.L.W.; Roduner, E
---- Gas phase addition kinetics of the tert-butyl radical to oxygen
---- Ber. Bunsenges. Phys. Chem. vol.101.p.956-960. 1997
---- 241-462K 1.52 Bar.
---- T-C4H9 +O2 =T-C4H9O2 4.089E+12 0.0 2.395
---- Formation of Cyclic Ether !!!!!
---- NIST 2000 Baker, R.R.; Baldwin, R.R.; Walker, R.W. 1975
---- 753K, 0.67 Bar
S-C4H9 +O2 =OH +2-3MOXI 1.042E+10 0.0 0.0
S-C4H9 +O2 =OH +THF 2.601E+10 0.0 0.0
S-C4H9 +O2 =OH +2EOXI 1.198E+09 0.0 0.0
************************************************************************
**** 29. C4H9O1 REACTIONS
************************************************************************
---- - R12 BETA SCISSSION for R-O@ -
---- 24b
---- korigi=(2.510E+14/0.0/61.1)
---- NIST 2000: Baldwin, A.C.; Barker, J.R.; Golden, D.M.; Hendry, D.G. 1977.
---- Uncertainty=3.16.
S-C4H9O >C2H5 +CH3CHO 1.760E+14 0.0 61.1
---- NIST 2000: Batt, L. The Gas-Phase Decomposition of Alkoxy Radicals
---- Int. J. Chem. Kinet. vol.11, p.977. 1979.
---- : 7.94x1014 (s-1) e-79486
S-C4H9O =C2H5CHO +CH3 7.940E+14 0.0 79.48
---- NIST 2000: Baldwin, A.C.; Golden, D.M. 1978.
P-C4H9O >N-C3H7 +CH2O 3.980E+13 0.0 79.9
---- - INVERSE: R12 BETA SCISSSION for R-O@ -
C2H5 +CH3CHO >S-C4H9O 4.580E+32 -6.79 87.7
N-C3H7 +CH2O >P-C4H9O 2.070E+27 -4.81 73.2
************************************************************************
**** 30. C4H9O2 REACTIONS
************************************************************************
----
----
---- H OOH H H
---- | | | |
---- H-C---C---C--C-H -> 3C4OOH2
---- | | | |
---- H H @ H
----
----
---- - R8 INTERNAL H ABSTRACTION -
---- 21b
S-C4H9O2>3C4OOH2 1.390E+12 0.0 118.0
S-C4H9O2>1C4OOH2 2.080E+12 0.0 138.0
S-C4H9O2>4C4OOH2 2.600E+11 0.0 110.0
P-C4H9O2>2C4OOH1 1.390E+12 0.0 118.0
P-C4H9O2>3C4OOH1 1.730E+11 0.0 92.0
P-C4H9O2>4C4OOH1 3.260E+10 0.0 91.0
---- - INVERSE: R8 INTERNAL H ABSTRACTION -
3C4OOH2 >S-C4H9O2 3.810E+09 0.00940 63.9
1C4OOH2 >S-C4H9O2 1.060E+10-0.131 69.6
4C4OOH2 >S-C4H9O2 1.330E+09-0.131 41.6
2C4OOH1 >P-C4H9O2 2.990E+09 0.0447 63.9
3C4OOH1 >P-C4H9O2 3.740E+08 0.0447 37.9
4C4OOH1 >P-C4H9O2 1.300E+08-0.0953 22.5
----
----
---- H OOH H H
---- | | | |
---- H-C---C---C--C-H -> 3OO4OOH2
---- | | | |
---- H H O H
---- |
---- O
---- |
---- @
----
---- - R13 ADDITION OF MOLECULAR OXYGEN -
---- 21b
4C4OOH2 +O2 =4OO4OOH2 4.500E+12 0.0 0.0
1C4OOH2 +O2 =1OO4OOH2 4.500E+12 0.0 0.0
3C4OOH2 +O2 =3OO4OOH2 1.000E+13 0.0 0.0
4C4OOH1 +O2 =4OO4OOH1 1.000E+13 0.0 0.0
3C4OOH1 +O2 =3OO4OOH1 1.000E+13 0.0 0.0
2C4OOH1 +O2 =2OO4OOH1 1.000E+13 0.0 0.0
---- - INVERSE: R13 ADDITION OF MOLECULAR OXYGEN -
---- 4OO4OOH2>4C4OOH2 +O2 6.540E+16 -0.173 142.0
---- 1OO4OOH2>1C4OOH2 +O2 6.540E+16 -0.173 143.0
---- 3OO4OOH2>3C4OOH2 +O2 1.180E+19 -0.724 147.0
---- 4OO4OOH1>4C4OOH1 +O2 1.010E+19 -0.701 146.0
---- 3OO4OOH1>3C4OOH1 +O2 1.010E+19 -0.701 146.0
---- 2OO4OOH1>2C4OOH1 +O2 1.020E+19 -0.703 146.0
----
---- - C1 FORMATION OF O-HETEROCYKLEN -
---- 21
3C4OOH2 >2-3MOXI +OH 1.300E+10 0.0 65.5
1C4OOH2 >2EOXI +OH 1.300E+10 0.0 65.5
4C4OOH2 >2MOXE +OH 1.300E+10 0.0 62.9
2C4OOH1 >2EOXI +OH 1.300E+10 0.0 65.5
3C4OOH1 >2MOXE +OH 1.300E+10 0.0 62.9
4C4OOH1 >THF +OH 1.300E+10 0.0 52.2
---- - LT6 FORMATION OF C-fuel-ALKEN -
1C4OOH2 >1-C4H8 +HO2 1.000E+09 0.0 31.4
3C4OOH2 >2-C4H8 +HO2 1.000E+09 0.0 31.4
2C4OOH1 >1-C4H8 +HO2 1.000E+09 0.0 31.4
----
----
---- H OOH H H
---- | | | |
---- H-C---C---C--C-H -> S-C4OOH
---- | | | |
---- H H H H
----
----
----
---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- 22b, nur HO2 27b
S-C4H9O2+H2O2 =S-C4OOH +HO2 4.640E+10 0.0 -10.8
S-C4H9O2+CH2O =S-C4OOH +CHO 1.000E+12 0.0 42.0
S-C4H9O2+CH3CHO =S-C4OOH +CH3CO 1.000E+12 0.0 42.0
S-C4H9O2+C2H5CHO =S-C4OOH +C2H5CO 1.000E+12 0.0 42.0
---- Hago lo mismo que con C3H7O2 numeral 17
S-C4H9O2+N-C3H7 =S-C4H9O +N-C3H7O 3.800E+12 0.0 -5.06
S-C4H9O2+I-C3H7 =S-C4H9O +I-C3H7O 3.800E+12 0.0 -5.06
S-C4H9O2+CH3 =S-C4H9O +CH3O 3.800E+12 0.0 -5.06
S-C4H9O2+C3H6 =S-C4OOH +C3H5 3.200E+11 0.0 62.28
S-C4H9O2+CH4 =S-C4OOH +CH3 1.140E+13 0.0 85.52
S-C4H9O2+CH3OH =S-C4OOH +CH2OH 6.300E+12 0.0 80.92
----
P-C4H9O2+H2O2 =P-C4OOH +HO2 4.640E+10 0.0 -10.8
P-C4H9O2+CH2O =P-C4OOH +CHO 1.000E+12 0.0 42.0
P-C4H9O2+CH3CHO =P-C4OOH +CH3CO 1.000E+12 0.0 42.0
P-C4H9O2+C2H5CHO =P-C4OOH +C2H5CO 1.000E+12 0.0 42.0
---- Hago lo mismo que con C3H7O2 numeral 17
P-C4H9O2+N-C3H7 =P-C4H9O +N-C3H7O 3.800E+12 0.0 -5.06
P-C4H9O2+I-C3H7 =P-C4H9O +I-C3H7O 3.800E+12 0.0 -5.06
P-C4H9O2+CH3 =P-C4H9O +CH3O 3.800E+12 0.0 -5.06
P-C4H9O2+C3H6 =P-C4OOH +C3H5 3.200E+11 0.0 62.28
P-C4H9O2+CH4 =P-C4OOH +CH3 1.140E+13 0.0 85.52
P-C4H9O2+CH3OH =P-C4OOH +CH2OH 6.300E+12 0.0 80.92
----
---- - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE -
---- S-C4OOH +HO2 >S-C4H9O2+H2O2 2.430E+10-0.114 126.0
---- S-C4OOH +CHO >S-C4H9O2+CH2O 2.560E+06 0.989 0.765
---- S-C4OOH +CH3CO >S-C4H9O2+CH3CHO 1.100E+06 1.19 17.4
---- S-C4OOH +C2H5CO >S-C4H9O2+C2H5CHO 1.350E+09 0.242 22.4
----
---- P-C4OOH +HO2 >P-C4H9O2+H2O2 2.050E+10-0.0893 126.0
---- P-C4OOH +CHO >P-C4H9O2+CH2O 2.170E+06 1.01 0.688
---- P-C4OOH +CH3CO >P-C4H9O2+CH3CHO 9.260E+05 1.22 17.3
---- P-C4OOH +C2H5CO >P-C4H9O2+C2H5CHO 1.140E+09 0.267 22.3
----
----
----
---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- 25b
S-C4H9O2+C4H10 >S-C4OOH +P-C4H9 1.680E+13 0.0 85.5
S-C4H9O2+C4H10 >S-C4OOH +S-C4H9 1.120E+13 0.0 74.0
P-C4H9O2+C4H10 >P-C4OOH +P-C4H9 1.680E+13 0.0 85.5
P-C4H9O2+C4H10 >P-C4OOH +S-C4H9 1.120E+13 0.0 74.0
---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
S-C4OOH +P-C4H9 >S-C4H9O2+C4H10 1.330E-12 6.74 -18.0
S-C4OOH +S-C4H9 >S-C4H9O2+C4H10 5.260E-13 6.87 -15.1
P-C4OOH +P-C4H9 >P-C4H9O2+C4H10 1.130E-12 6.76 -18.1
P-C4OOH +S-C4H9 >P-C4H9O2+C4H10 4.450E-13 6.89 -15.2
----
************************************************************************
**** 31. C4H9O4 REACTIONS
************************************************************************
****
**** Raul ensayo C2
---- - R14 INTERNAL H ABSTRACTION -
4OO4OOH2=2-4C4HP 1.000E+11 0.0 33.9
1OO4OOH2=2-1C4HP 1.000E+11 0.0 56.43
3OO4OOH2=2-3C4HP 1.000E+11 0.0 56.43
4OO4OOH1=1-4C4HP 2.000E+11 0.0 50.16
3OO4OOH1=1-3C4HP 2.000E+11 0.0 46.398
2OO4OOH1=1-2C4HP 2.000E+11 0.0 71.06
----
---- - INVERSE: R14 INTERNAL H ABSTRACTION -
---- 2-4C4HP >4OO4OOH2 1.000E+11 0.0 26.8
---- 2-1C4HP >1OO4OOH2 1.000E+11 0.0 43.4
---- 2-3C4HP >3OO4OOH2 1.000E+11 0.0 43.4
---- 1-4C4HP >4OO4OOH1 2.000E+11 0.0 31.4
---- 1-3C4HP >3OO4OOH1 2.000E+11 0.0 27.6
---- 1-2C4HP >2OO4OOH1 2.000E+11 0.0 52.3
----
---- - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS -
2-4C4HP =2OC4HP4 +OH 1.000E+09 0.0 31.4
2-1C4HP =2OC4HP1 +OH 1.000E+09 0.0 31.4
2-3C4HP =2OC4HP3 +OH 1.000E+09 0.0 31.4
1-4C4HP =1OC4HP4 +OH 1.000E+09 0.0 31.4
1-3C4HP =1OC4HP3 +OH 1.000E+09 0.0 31.4
1-2C4HP =1OC4HP2 +OH 1.000E+09 0.0 31.4
----
---- - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS -
---- 2-4C4HP >2OC4HP4 +OH 1.000E+09 0.0 31.4
---- 2-1C4HP >2OC4HP1 +OH 1.000E+09 0.0 31.4
---- 2-3C4HP >2OC4HP3 +OH 1.000E+09 0.0 31.4
---- 1-4C4HP >1OC4HP4 +OH 1.000E+09 0.0 31.4
---- 1-3C4HP >1OC4HP3 +OH 1.000E+09 0.0 31.4
---- 1-2C4HP >1OC4HP2 +OH 1.000E+09 0.0 31.4
----
************************************************************************
**** 32. C4H10O2 REACTIONS
************************************************************************
----
---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
---- 25b
I-C3H7O2+C4H10 >IC3H7OOH+P-C4H9 1.680E+13 0.0 85.5
I-C3H7O2+C4H10 >IC3H7OOH+S-C4H9 1.120E+13 0.0 74.0
N-C3H7O2+C4H10 >NC3H7OOH+P-C4H9 1.680E+13 0.0 85.5
N-C3H7O2+C4H10 >NC3H7OOH+S-C4H9 1.120E+13 0.0 74.0
---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE -
IC3H7OOH+P-C4H9 >I-C3H7O2+C4H10 1.400E-12 6.73 -18.0
IC3H7OOH+S-C4H9 >I-C3H7O2+C4H10 5.540E-13 6.86 -15.1
NC3H7OOH+P-C4H9 >N-C3H7O2+C4H10 1.130E-12 6.76 -18.1
NC3H7OOH+S-C4H9 >N-C3H7O2+C4H10 4.440E-13 6.89 -15.2
----
************************************************************************
**** 33. C4H10O2 REACTIONS
************************************************************************
---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- 23b
S-C4OOH >S-C4H9O +OH 7.000E+15 0.0 174.0
P-C4OOH >P-C4H9O +OH 1.100E+16 0.0 182.0
---- - INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
S-C4H9O +OH >S-C4OOH 1.160E+10 1.37 -15.30
P-C4H9O +OH >P-C4OOH 6.790E+18 -1.41 7.41
---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules -
---- Konnov 1999:
---- kcin1= (4.000E+15/0/179.7)
---- kcin1= (4.000E+15/0/179.7)
----
---- Kirk, A.D.; Knox, J.H.
---- The pyrolysis of alkyl hydroperoxides in the gas phase
---- Trans. Faraday Soc. vol. 56; p.1296-1303. 1960 Experimental
---- 553 - 653 K. Uncertainty=2.0.
---- kcin=(1.580E+15/0/167.121)
----
---- Sahetchian, K.A.; Rigny, R.; Tardieu de Maleissye, J.; Batt, L.; Anwar Khan, M.; Mathews, S.
---- The pyrolysis of organic hydroperoxides (ROOH). Symp. Int. Combust. Proc
---- vol.24. p.637 - 643; 1992
---- 443-473K; 1.01Bar. Uncertainty=3.2
---- kcin=(5.010E+15/0/177.93)
----
************************************************************************
----
----
----
---- Literaturreferenzen
---- 90DAG/LIU
---- 88HER
---- 88WAL/DAG2
---- 86ATK2
---- 86LIF/BID
---- 80DUK/HOL
---- 75FLO/PEN
---- 14: Cox, R.A., IEA Combustion Research Conference, Harwell Laboratory,
---- 1986, AERE-R12102.
---- 15: Benson, S.W., Oxidation Communications 2-3, 4:169-188 (1982).
---- 17: Gibson, C., Gray, P., Griffiths, J.F., and Hasko, S.M., Twentieth
---- Symposium (International) on Combustion, The Combustion Institute,
---- Pittsburgh, 1984, pp. 101-109.
---- 20: Lenhardt, T.M., McDade, C.E., and Bayes, K.D., J. Chem. Phys.
---- 72-1:304-310 (1980).
---- 21: Kojima, S., R&D Review of Toyota CRDL 28(4): 25-36 (1993).
---- 22: Values for reaction HO2 + CH2O > CHO + H2O2 were assigned.
---- 23: Sahetchian, K.A., Rigny, H.R., and Ben-Aim, R.I., Int. J. Chem. Kinet.
---- 14:1325-1337(19982). Values for the decomposition of n-C7H15OOH or
---- s-C7H15OOH were assigned according to primary or secondary of the OOH
---- site, respectively.
---- 24: Baldwin, A.C., Barker, J.R., Golden, D.M., and Hendry, D.G., J. Phys.
---- Chem. 81: 2483-2492 (1977).
---- 25: Values for reaction HO2 + C4H10 > N-C4H9 +H2O2 or HO2 + C4H10 > S-C4H9
---- + +H2O2 were assigned according to the product N-C4H9 or S-C4H9,
---- respectively.
---- 26: wie 22
---- 27: Values for reaction HO2 + CH3O2 > H2O2 + CH3O2H were assigned.
---- 28: Plumb, I.C., and Ryan, K.R., Int. J. Chem. Kinet. 13:1011-1028 (1981).
---- 29: Ruiz, R.P., and Bayes, K.D., J. Phys. Chem. 88: 2592-2595 (1984).
---- 30: Jayaswal, B.K., Ind. J. Technol. 22: 306-311 (1984).
---- 31: Ernst, J., Ber. Bunsenges. Phys. Chem. 80: 645-650 (1976).
---- 32: Clarke, M.J., and Holbrook, K.A., J. Chem. Soc. Farad. Trans. 1 73:
---- 890-895 (1977).
---- 33: Hammonds, P., and Holbrook, K.A., J. Chem. Soc. Farad. Trans. 1 78:
---- 2195-2203 (1982).
---- 36: Values given in the reference of source 12 for O2 + CH3CHO > HO2 +
---- CH3CO were assigned.
---- 37: Kaiser, E.W., Int. J. Chem. Kinet. 15: 997-1012 (1983).
---- 38: Watkins, K.W., and Word, W.W., Int. J. Chem. Kinet. 17: 455-501 (1985).
---- 39: Zabarnick, S., and Heicklen, J., Int. J. Chem. Kinet. 17: 455-501
---- (1985).
---- 70: Values for reaction CH3 + CH3O2 > 2 CH3O were assigned.
END
000 COMPLEX REACTIONS
END