MECHANISM C1-4 Gas phase chemistry, Combustion, Partial oxidation *********************************************************************** **** * **** Gas phase reaction mechanism for combutsion and * **** partial oxidation of C1-C4 alkanes * **** * **** * **** Version 1.0 December 2003 * **** * **** Raul Quiceno, Jürgen Warnatz, Olaf Deutschmann * **** IWR, Heidelberg University, Germany * **** Contact: mail@detchem.com (O. Deutschmann) * **** * **** References: * **** R. Quiceno, PhD thesis, University of Heidelberg * **** R. Quiceno, O. Deutschmann, J. Warnatz, * **** European Combustion Meeting 2005. Louvain-la-Neuve, * **** 3-6 April 2005, Belgian Section of the Combustion * **** Institute paper, Chemical kinetics section, paper 29 * **** www.detchem.com/mechanisms * **** * **** * **** Kinetic data format: DETCHEM * **** k = A * T**b * exp (-Ea/RT) A b Ea * **** (cm,mol,s) - kJ/mol * **** * **** + some reactions in TROE nomenclature * **** * **** see manuals on www.detchem.com for details * **** * **** The kinetic data of the backward reactions of * **** reactions are calculated * **** from thermodynamics (k_b = k_f /K) * **** * **** * **** DETCHEM format * **** * *********************************************************************** ********************************************************************* ****Low Temperature Mechanism: ****Low temperature mechanism C1-C4 generiert von M.Nehse fuer O.Deutschmann. ****Generierten Spezies. Source: Minetti1995 ****Neccessary for low temperature mechanisms of higher HC complete low T mech of higher HC = C1-C4 high temp base ****mechanism + Low temperature mechanism C1-C4 (mc4low)+ automatic generated low temp mech for higher HC. ****THESE 3 PARTS MUST BE CONCATENATED for a COMPLETE LOW TEMP MECHANISM !!! ****Oxygenates comes from second addition, and isomerization reactions **** ****High temperature Mechanism: ****VK Updated version of the C4-mechanism of Ch. Chevalier (1993). ****VK Checked with respect to free flame velocities, ignition delay times and ****VK profiles of concentrations of burner stabilized flames of various fuels. **** COMMENTS IN THE MECHANISM ALWAYS REFER TO THE NEXT FOLLOWING REACT. **** WITH C2H2 + O2 ---> HCCO + OH MILLER 82 **** WITH C2H3 + H ---> C2H2 + H2 DLOG K = + 0.0 **** WITH C2H3 + OH ---> C2H2 + H2O 100% ESTIMATED!!! **** DECOMP C2H3 FROM K0/KINF CEE /3 **** WITH C2H2 + C2H ---> C4H2 **** WITH C2H2 + H ---> C2H + H2 WA 1984 **** WITH CH2 + CH2 ---> C2H2+ H2 MILLER 1982 **** WITH CH2 + HCCO ---> C2H3+ CO MILLER 1982 **** CONSUMPTION OF CH3CHO CORRECTED **** VALUES C3 FROM WESTBROOK - DRYER 1984 **** DECOMP. CH3CHO WITH M* (LOW P, BIMOLEC. REACTION) **** CH3CHO + OH ---> CH3CO + H2O WITH NEGATIVE ACT ENERGY (COR.) **** CO + OH --> CO2 + H 6.0 E 06... **** CH3 + OH --> CH3O + H VALUE SLOANE 1989: 4.52E+14/0/64.8 **** AND VALUE REVERSE REACTION SLOANE 1989: 4.75E+16/-0.13/88 **** 1CH2 + O2 --> ONLY CO + H + OH **** 1CH2 + H2 --> CH3 +H WITH REVERSE REACTION **** CH2OH + M --> CH2O + H + M : 5 EXP13... **** CH3O + M --> CH2O + H + M : VALUE OF DECOMP. OF CH2OH **** CH3OH --> 100% CH2OH ****VK CH3 + OH --> 1CH2 + OH value of Dobe, Berces, Marta: ****VK 26th Symp.(Int.) Comb. Institute (1996) work in progress poster ****VK CH3 + M --> CH + H2 + M Markus(1992) added ****VK 1CH2 + CH3 --> C2H4 + H Markus(1992) added ****VK C2H2 + O --> 1) 3CH2 + CO CEC94 2.168E+06/2.1/6.57 ****VK --> 2) HCCO + H CEC94 5.059E+06/2.1/6.57 ****VK ( branching ratio 1) / 2) = 0.3 / 0.7) recommended by CEC1994 ****VK C2H3 + O2 ---> Prod. overall rate CEC1994 with 2 reaction pathways: ****VK C2H3 + O2 ---> CH2O + CHO ****VK C2H3 + O2 ---> CH2CHO + O ****VK C formation reactions added: ****VK CH + H --> C + H2 Thorne (1986) ****VK C + O2 --> CO + O Thorne (1986) ---- ---- PART ONE: MECHANISM HIGT TEMPERATURE ****************************************** **** 01. H2-O2 React. (no HO2, H2O2) ****************************************** ---- (OLD: OK CEC 91 O2+H=OH+O /2.000E+14/0.0/70.300) ---- CEC 94, (9.756E+13/0/62.10) (300-5000 K, dlog k= +-0.1 rising to +-0.5) ---- k_r, CEC 94, k=(1.2E+13/0/-0.931), (220-500K, dlog k= +-0.2) ---- k=(1.445+13/0/2.935), (1000-2000K, dlog k= +-0.1) O2 +H =OH +O 9.756E+13 0.0 62.100 ---- O2 +H =OH +O 2.000E+14 0.0 70.300 ---- Baulch,D.L.; Cobos,C.J.; Cox,R.A.; Esser,C.; Frank,P.; Just,Th.; Kerr,J.A.; Pilling,M.J.; Troe,J.; Walker, R.W.; Warnatz,J ---- 1992. Uncertainty=1.26 ---- OH +O =O2 +H 1.445E+13 0.0 2.935 ---- ---- Yuan, T.; Wang, C.; Yu, C.-L.; Frenklach, M. Determination of the rate coefficient for the reaction H+O2->OH+O by a ---- shock tube/laser absorption/detailed modeling study.J. Phys. Chem. vol.95. p.1258. 1991. (1050-2700K)(1.39-2.73Bar) ---- Uncertainly=1.12, Measure!!!kcin=(1.614E+17/-0.93/70.590) ---- O2 +H =OH +O 1.807E+17 -0.93 70.590 ---- ---- Germann, T.C.; Miller, W.H. Quantum mechanical pressure-dependent reaction and recombination rates for O+OH->H+O2,HO2 ---- J. Phys. Chem. A vol.101. p.6358-6367. 1997. (500-2000K) Demasiado rapida para ignition. ---- OH +O =O2 +H 5.119E+11 0.39 2.809 ---- ---- Klimo, V.; Bittererova, M.; Biskupic, S.; Urban, J.; Micov, M. Temperature dependences in the O+OH->O2+H reaction. ---- Quasiclassical trajectory calculation. Collect. Czech. Chem. Commun. vol58. p234-243. 1993. ---- OH +O =O2 +H 9.069E+14-0.58 2.153 ---- ---- 2003 ---- kcin=(5.2038E+15/-0.458/70.08) ---- (+,-) 0.1 = (1.26) ---- O2 +H =OH +O 4.204E+15 -0.458 70.080 ---- ---- CEC 94 (5.120E+04/2.67/26.27) (300-2500 K,dlogk = +-0.5 rising to +-0.2) H2 +O =OH +H 5.060E+04 2.670 26.300 ---- ---- 2003 = CEC 94 ---- CEC 94 (1.000E+08/1.6/13.80) (300-2500 K,dlogk = +-0.1 rising to +-0.3) ---- k_r, CEC 94, k=(4.517+08/1.6/77.071), (300-2500, dlog k= +-0.2) H2 +OH =H2O +H 1.000E+08 1.600 13.800 ---- ---- Oldenborg, R.C.; Loge, G.W.; Harradine, D.M.; Winn, K.R. Kinetic study of the OH + H2 reaction from 800 to 1550 K ---- J. Phys. Chem. vol96. p8426-8430. 1992. (250-2580K) (0.27Bar) ---- kcin=(2.168E+08/1.52/14.467) ---- +,- 0.1 at 250K ---- +,- 0.3 at 2500K ---- H2 +OH =H2O +H 2.168E+08 1.520 14.467 ---- ---- CEC 94 (1.506E+09/1.14/0.416) (250-2500 K, dlogk = +-0.2) OH +OH =H2O +O 1.500E+09 1.140 0.420 ---- Sutherland, J.W.; Patterson, P.M.; Klemm, R.B. Rate constants for the reaction, O(3P)+H2O=OH+OH, over the temperature range ---- 1053K to 2033K using two direct techniques. Symp. Int. Combust. Proc. vol23. p51-57 1991. (1290-2030K) Medido. Uncertainty=1.16 ---- H2O +O =OH +OH 5.553E+13 0.0 79.90 ---- ****************************************** **** 02. Recombination Reactions ****************************************** ---- OK CEC 91 (GIVEN HERE FOR H2) H +H +M(1) =H2 +M(1) 1.800E+18 -1.000 0.000 ---- OK ULI 88, WA 84, NO RECOM. CEC. O +O +M(1) =O2 +M(1) 2.900E+17 -1.000 0.0 ---- OK CEC 94 (GIVEN FOR H2),MEASURED FOR H2O, AR, N2,(300-3000 K, dlogk=+-0.5) ---- (MEASURED FOR H2O, GIVEN HERE FOR H2) (2.176E+22/-2.0/0.0) ---- (MEASURED FOR AR, GIVEN HERE FOR H2) (2.383E+22/-2.0/0.0) ---- (MEASURED FOR N2, GIVEN HERE FOR H2) (5.531E+22/-2.0/0.0) H +OH +M(2) =H2O +M(2) 5.530E+22 -2.000 0.000 ****************************************** **** 03. HO2 Formation/Consumption ****************************************** ---- CEC 94 k=(2.103E+18/-0.8/0), (MEASURED FOR H2), (300-2000K, dlogk = +-0.5) ---- ALSO MEASURED FOR AR AND N2, (300-2000K, dlogk = +-0.5) ---- (MEASURED FOR AR, GIVEN HERE FOR H2) (1.761E+18/-0.8/0.0) ---- (MEASURED FOR N2, GIVEN HERE FOR H2) (3.536E+18/-0.8/0.0) H +O2 +M(3) =HO2 +M(3) 2.100E+18 -0.800 0.0 ---- CEC 94 (1.690E+14/0/3.66), (300-1000 K, dlogk = +-0.3) HO2 +H =OH +OH 1.500E+14 0.0 3.800 ---- CEC 94 (4.280E+13/0/5.90), (300-1000 K, dlogk = +-0.3) HO2 +H =H2 +O2 3.000E+13 0.0 4.000 ---- OK CEC 94 (3.011E+13/0/7.20), (300-1000 K, dlog k = +-0.3) HO2 +H =H2O +O 3.000E+13 0.0 7.200 ---- CEC 94 (3.19E+13/0/0), (300-1000 K, dlogk = +-0.3 rising to +-0.5) HO2 +O =OH +O2 2.000E+13 0.0 0.0 ---- CEC 94, k=(2.89E+13/0/-2.08), (300-2000K, dlogk = +-0.2 rising to +-0.5) HO2 +OH =H2O +O2 6.000E+13 0.0 0.0 ---- HO2 +OH =H2O +O2 2.890E+13 0.0 -2.08 ****************************************** **** 04. H2O2 Formation/Consumption ****************************************** ---- CEC 94 (4.22E+14/0/50.14) (850-1250 K) OR ---- CEC 94 (4.22E+14/0/50.14+1.32E+11/0/-6.82) (550-1250 K, +-0.15 to +-0.4) HO2 +HO2 =H2O2 +O2 4.220E+14 0.0 50.140 **** BEGIN DUPLICATE REACTION HO2 +HO2 =H2O2 +O2 1.320E+11 0.0 -6.820 **** END DUPLICATE REACTION ---- CEC 94, k_inf=(7.23E13/-0.37/0.00), (200-1500K, dlog k=+-0.5) ---- k_0(N2)=(5.53E19/-0.76/0.00), (250-1400K, dlog k=+-0.4) ---- Fcent(N2)=(0.50) , (200-1500K, dFc = +- 0.2) OH +OH +M(1) =H2O2 +M(1) 7.230E+13 -0.370 0.0 LOW 5.530E+19 -0.760 0.0 TROE 0.500 0.0 0.0 0.0 ---- OK CEC 94 (1.686E+12/0/15.71), (300-1000 K, dlogk = +-0.3) H2O2 +H =H2 +HO2 1.700E+12 0.0 15.700 ---- OK CEC 94 (1.024E+13/0/14.97) (300-1000 K , dlogk = +-0.3) H2O2 +H =H2O +OH 1.000E+13 0.0 15.000 ---- CEC 94 (6.62E+11/0/16.63) (300-500 K, +-0.3) ---- 86 TSA/HAM (9.63E+06/2.0/16.629) (300-2500 K) H2O2 +O =OH +HO2 9.630E+06 2.0 16.630 ---- CEC 94 k=(7.82E+12/0/5.57), (300-1000 K, dlogk = +-0.2 rising to +-0.5) H2O2 +OH =H2O +HO2 5.400E+12 0.0 4.200 ****************************************** **** 05. CO REACTIONS ****************************************** ---- GRI 2.11, k=(4.76E+07/1.23/0.29) ---- 76 BAU/DRY, k=(1.51E+07/1.3/-3.2), (250-2000K, dlog k = +-0.5) ---- 94 BAU/COB, k=(6.32E+06/1.5/-2.08), (300-2000K, dlog k = +-0.2 at 300K r.to +-0.5) ---- attention 94 BAU/COB evaluation is based on wrong flame velocity measurements ---- RAUL:SHINJI KOJIMA,CANDF:99:87-136,1994 k=(4.400E+06 1.500 -3.100) 4 ---- RAUL:RAVISHANKARA 1983 [250K - 1040K] k=(5.480E+10 0.295 68.150) ---- 76 BAU/DRY are in better agreement to direct kinetic measurements CO +OH =CO2 +H 4.760E+07 1.230 0.290 ---- 86 TSA/HAM (1.50E+14/0/98.94), (300-2500K) CO +HO2 =CO2 +OH 1.500E+14 0.0 98.700 ---- ---- Volman, D.H Photochemistry of the gaseous hydrogen peroxide-carbonmonoxide system. IV. Survey of the ---- rate constant and reaction profile for the HO2 + CO ?rarrow? CO2 + OH reaction. Journal:Photochem. Photobiol ---- p.1.00-3.00. vol100 1996.(250-800K) ---- CO +HO2 =CO2 +OH 2.079E+14 0.5 95.61 ---- ---- Vardanyan, I.A.; Sachyan, G.A.; Nalbandyan, A.B.The Rate Constant of the Reaction HO2 + CO = CO2 + OH ---- Int. J. Chem. Kinet. vol.7. p.23.00. 1975. Exp. (878-952K)(1.01Bar). (+/-) 2.999E+13 cm3/mol/s (+/-) 12.47 kJ/mol ---- CO +HO2 =CO2 +OH 1.017E+14 0.0 96.44 ---- ---- RAUL: SYMP NO REC CEC K=( 7.100E+13 0.0 -19.000) ---- 86 TSA/HAM, k(N2)=(6.170E+14/0/12.56), here given for H2 CO +O +M(1) =CO2 +M(1) 1.540E+15 0.0 12.560 ---- M( 5) ---- Third-body efficiencies: [2] ---- N2 1.0 ---- H2 Enhanced by 2.0 ---- O2 Enhanced by 6.0 ---- H2O Enhanced by 6.0 ---- CH4 Enhanced by 2.0 ---- CO Enhanced by 1.5 ---- CO2 Enhanced by 3.5 ---- C2H6 Enhanced by 3.0 ---- AR Enhanced by 0.5 ---- Pressure dependence was added in GRI-Mech 3.0, using k(inf) from J. Troe, 15th Symp. (Int'l.) on Combustion, 9.667 (1974) ---- Warnatz, J. Rate coefficients in the C/H/O system. Combustion chemistry (ed. W.C.Gardiner,Jr.) Springer-Verlag, NY 1984, p.197. ---- ---- k_o = 6.02E+14 exp(-3000 cal/mol /RT) cm^6/mol^2 s ---- ---- k_inf = 1.80E+10 exp(-2385 cal/mol /RT) cm^3/mol s ---- ---- 86 TSA/HAM (2.53E+12/0/199.54) (300-2500 K, delta = +-2) CO +O2 =CO2 +O 2.500E+12 0.0 200.000 ---- RAUL: SE ADICIONA:(SHINJI KOJIMA,CANDF:99:87-136,1994) CO +CH3O =CO2 +CH3 1.580E+13 0.0 49.400 ****************************************** ---- ---- ---- ****************************************** **** 10. CH Reactions ****************************************** ---- OK CEC 94, k=(3.98E=13/0/0), (300-2000K ,dlog k = +-0.5) CH +O =CO +H 4.000E+13 0.0 0.0 ---- CEC 94, k=(3.312E+13/0/0), (300-2000K, dlog k= +-0.3 r. to +-0.5 at 2000K) ---- products:(CHO+O),(CO+OH),no branching ratio CH +O2 =CHO +O 3.000E+13 0.0 0.0 ---- CEC 94, k=(3.43E+12/0/2.87), (300-1000K, dlog k = +-0.1) CH +CO2 =CHO +CO 3.400E+12 0.0 2.900 ---- CEC 94, k=5.721E+12/0/-3.16), (300-1000K, dlog k = +-0.1) CH +H2O =CH2O +H 4.560E+12 0.0 -3.200 CH +H2O =3CH2 +OH 1.140E+12 0.0 -3.200 ---- Miller,Bowman Prog. Energy Combust.Sci. 15,287, (1989) CH +OH =CHO +H 3.000E+13 0.0 0.0 ****************************************** **** 11. CHO REACTIONS ****************************************** ---- OK WA 84 NO REC CEC k=(7.100E+14 0.0 70.300) ---- CEC 94, k=(4.474E14/0/65.93) meas. AR, here given for H2, ---- k_r=(5.492E+14/0/3.076) meas. AR, here given for H2 ---- for k (600-2500K, dlogk = +-0.5); for k_r (300-2500K, dlogk = +-0.5) CHO +M(1) =CO +H +M(1) 4.500E+14 0.0 66.000 ---- OK CEC 94 (300-2500 K, dlogk = +-0.3) CHO +H =CO +H2 9.000E+13 0.0 0.0 ---- OK CEC 94 (300-2500 K, dlogk = +-0.3) CHO +O =CO +OH 3.000E+13 0.0 0.0 ---- OK CEC 94 (300-2500 K, dlogk = +-0.3) CHO +O =CO2 +H 3.000E+13 0.0 0.0 ---- OK CEC 94 (300-2500 K, dlogk = +-0.3) CHO +OH =CO +H2O 1.000E+14 0.0 0.0 ---- OK CEC 94 k_sum=(3.011E+12/0/0) (300-2500 K, dlogk=+-0.3), ---- (CO+HO2),(OH+CO2),(HCO3); (CO+HO2) main channel, (HCO3) not relevant ---- Total:CHO+O2 = CO+HO2 3.000E+12/0.0/0.0) CHO +O2 =CO +HO2 2.400E+12 0.0 0.0 ---- ---- Hsu 1996 kcin=(1.548E+04/2.38/6.386) ---- Timonen kcin=(7.588E+12/0.0/3.119) ---- Kinetics of the reactions of the formyl radical with oxygen, nitrogen dioxide, chlorine, and ---- bromine. J. Phys. Chem. vol.92. p.651. 1988.(295-713K) 0Bar.Experimental!!! ---- CHO +O2 =CO +HO2 7.588E+12 0.0 3.119 ---- ---- Vandooren, J.; Oldenhove de Guertechin, L.; van Tiggelen, P.J. Kinetics in a lean formaldehyde flame ---- Combust. Flame.. vol64. p.127. 1986. (300-1600K) (0.03Bar) ---- CHO +O2 =CO +HO2 2.697E+13 0.0 4.989 ---- ---- Veyret, B.; Lesclaux, R. Absolute Rate Constants for the Reactions of HCO with O2 and NO from 298 to 503 ---- J. Phys. Chem. vol85.p.1918. 1981. (298-503K) (0.06-0.67Bar). n=(-0.1 hasta -0.7) ---- kcin= (3.390E+12/(T/298)^n/0.0) ---- n= -0.1: ---- CHO +O2 =CO2 +OH 5.993E+12 -0.1 0.0 ---- n= -0.7: ---- CHO +O2 =CO2 +OH 1.828E+14 -0.7 0.0 ---- ---- NIST 2000 Nadtochenko S.A. Sarkisov. O.M. Vedenee O.V ---- Study of the reaction of CHO with Molecular Oxygen. Doklur Phy Chem (Engl. Transl) ---- vol.244 p.152 1979 (Relative rate measure (19% of: CHO+O2 = CO+HO2) CHO +O2 =CO2 +OH 0.600E+12 0.0 0.0 ---- ---- OK CEC 94 (300 K, dlogk = +-0.3) CHO +CHO =CH2O +CO 3.000E+13 0.0 0.0 ---- Tsang 1986 CHO +HO2 =OH +CO2 +H 3.000E+13 0.0 0.0 ****************************************** **** 12. CH2 Reactions ****************************************** ---- CEC 94, k=(6.022E+12/0/-7.48), (300-3000K, dlog k = +-0.7) 3CH2 +H =CH +H2 6.000E+12 0.0 -7.500 ---- OK CEC 89 k=(8.400E+12 0.0 0.0) ---- CEC 94, k=(1.204E+14/0/0),(300-2500K, dlog k=+-0.2 rising to +-0.7 at 2500K) ---- Products: (CO+H+H), (CO+H2); k1/k=0.6+-0.3 over whole range 3CH2 +O >CO +H +H 7.600E+13 0.0 0.0 3CH2 +O =CO +H2 4.400E+13 0.0 0.0 ---- CEC 94, k=(1.204E+14/0/3.326),(300-3000K, dlog k = +-0.5) ---- products: (C2H2+H+H),(C2H2+H2), k2/k=0.9 =-0.1 over range 300-3000K 3CH2 +3CH2 =C2H2 +H2 1.200E+13 0.0 3.4 3CH2 +3CH2 =C2H2 +H +H 1.100E+14 0.0 3.4 ---- CEC 94, k=(4.215E+13/0/0), (300-3000K, dlog k=+-0.3 r. to +-0.5 at 3000K) 3CH2 +CH3 =C2H4 +H 4.200E+13 0.0 0.0 ---- 2 NEXT REACT.: OK CEC 89. THESE ARE THE 2 FASTEST REACTIONS. ---- CEC 94, k=(2.469E+13/0/6.236),(300-1000K,dlog k= +-0.1 r. to +-0.5 at 1000K) ---- O2+CH2=> ---- CO2+H2 From Konnov: 6.900E+11 / 0.0 / 2.09 ---- CO2+H+H From Konnov: 1.600E+12 / 0.0 / 4.18 ---- CO+OH+H From Konnov: 8.600E+10 / 0.0 / 4.18 ---- CO+H2O From Konnov: 1.900E+10 / 0.0 / -4.18 ---- CH2O+O From Konnov: 5.000E+13 / 0.0 / 37.62 ---- ---- CO+OH+H From GRI: 5.000E+12 / 0.0 / 6.27 ---- CO2+H+H From GRI: 5.800E+12 / 0.0 / 6.27 ---- CH2O+O From GRI: 2.400E+12 / 0.0 / 6.27 ---- 3CH2 +O2 =CO +OH +H 5.000E+12 0.0 6.270 3CH2 +O2 =CO2 +H2 5.800E+12 0.0 6.270 3CH2 +O2 =CH2O +O 2.400E+12 0.0 6.270 ---- ---- 3CH2 +O2 =CO +OH +H 8.600E+10 0.0 4.180 ---- 3CH2 +O2 =CO2 +H2 6.900E+11 0.0 2.090 ---- 3CH2 +O2 =CH2O +O 5.000E+13 0.0 37.62 ---- 3CH2 +O2 =CO2 +H +H 1.600E+12 0.0 4.180 ---- 3CH2 +O2 =CO +H2O 1.900E+10 0.0 -4.180 ---- ----(*) 3CH2 +O2 =CO +OH +H 1.300E+13 0.0 6.200 ----(*) 3CH2 +O2 =CO2 +H2 1.200E+13 0.0 6.200 ---- ---- CEC 94, scaled AR: k=(1.050E+13/0/0),(300-2000K, dlog k = +-0.3) ---- CEC 94, scaled N2: k=(1.510E+13/0/0),(300-2000K, dlog k = +-0.3) ---- only for H2, O2, H2O, CO, CO2, (N2 or AR) 1CH2 +M(1) =3CH2 +M(1) 1.200E+13 0.0 0.0 ---- CEC 94, k=(3.132E+13/0/0), (300-1000K, dlog k= +-0.3 r. to +-0.5 at 1000K) ---- procuts: ONLY THIS CHANNEL 1CH2 +O2 =CO +OH +H 3.100E+13 0.0 0.0 ---- OK CEC. WITH REVERSE REACTION THOUGH THE REV. ONE IS SO COMPETITIV ---- CEC 94, k_r=(6.02E+13/0/63.19), (300-2500K, dlog k= +-1.0) CH3 +H =1CH2 +H2 6.000E+13 0.0 63.2 ---- ****************************************** **** 13. CH2O Reactions ****************************************** ---- OK CEC 89 k=( 5.000E+16 0.0 320.000) ---- CEC 94, k=k1+k2=(4.646E+36/-5.54/404.58), (1700-3200, dlog k = +-0.3) ---- products: (CHO+H+M),(CO+H2+M), k2/k= 0.7 +-0.4, 2000-3000K CH2O +M(1) =CHO +H +M(1) 1.400E+36 -5.54 404.580 CH2O +M(1) =H2 +CO +M(1) 3.250E+36 -5.54 404.580 ---- ---- ---- FROM GRI 3.0 ----(*)H +CHO +M( 6) =CH2O +M( 6) 1.090E+12 0.48 1.770 ---- LOW 2.470E+24 -2.57 1.080 ---- TROE 0.782 271.0 2755.0 6570.0 ---- ---- k_o = 2.47E+24 T^(-2.57) exp(-425 cal/mol /RT) cm^6/mol^2 s ---- k_inf = 1.09E+12 T^0.48 exp(260 cal/mol /RT) cm3/mol s ---- F_cent = (1-0.782) exp(-T/271) + 0.782 exp(-T/2755) + exp(-6570/T) ---- ----(*)CO +H2 +M( 6) =CH2O +M( 6) 4.300E+07 1.5 332.728 ---- LOW 5.070E+27 -3.42 352.580 ---- TROE 0.932 197.0 1540.0 10300.0 ---- ---- k_o = 5.07E+27 T^(-3.42) exp(-84350 cal/mol /RT) cm^6/mol^2 s ---- k_inf = 4.30E+07 T^1.5 exp(-79600 cal/mol /RT) cm3/mol s ---- F_cent = (1-0.932) exp(-T/197) + 0.932 exp(-T/1540) + exp(-10300/T) ----- ---- OK CEC 91 k=(2.300E+10 1.05 13.700) ---- CEC 94 (1.265E+08/1.62/9.062) (300-1700 K, dlogk = +-0.1 rising to +-0.3) CH2O +H =CHO +H2 1.270E+08 1.62 9.000 ---- OK CEC 94 (250- 2000K, dlogk = +-0.1 rising to +-0.3) CH2O +O =CHO +OH 4.150E+11 0.57 11.600 ---- OK CEC 94 (3.43E+09/1.18/-1.87) (300-3000 K,dlogk = +-0.1 rising to +-0.7) CH2O +OH =CHO +H2O 3.400E+09 1.18 -1.870 ---- OK CEC 94 (600-1000 K, dlogk = +-0.5) CH2O +HO2 =CHO +H2O2 3.000E+12 0.0 54.7 ---- OK WA 84 k=(1.000E+11 0.0 25.500) ---- CEC 89: 1.8 E12/0/30.0. NOT IMPORTAN ---- CEC 91: 4.1 E12/0/37.0 ---- CEC 94: k=(7.83E-08/6.1/8.23), (300-2000K, dlog k = +-0.2) CH2O +CH3 =CHO +CH4 7.830E-08 6.1 8.200 ---- OK CEC 94 k=(6.020E+13/0/170.10), (700-1000 K, dlog k = +-0.5) CH2O +O2 =CHO +HO2 6.000E+13 0.0 170.700 ****************************************** **** 14. CH3 REACTIONS ****************************************** ---- CEC 94, k=(1.0E+16/0/379.1), (1500-3000K, dlog k = +-0.5) CH3 +M(1) =3CH2 +H +M(1) 1.000E+16 0.0 379.000 ---- M. W. Markus, D. Woiki, P. Roth, Symp. (Int.) on Comb., 24, 581, (1992) CH3 +M(1) =CH +H2 +M(1) 6.900E+14 0.0 345.03 ---- CEC 94, k=(4.22E13/0.00/0.00), (300-3000K, dlog k + =-0.4), educt CH2 1CH2 +CH3 =C2H4 +H 1.600E+13 0.00 -2.38 ---- CEC 94, k=(8.43E+13/0/0), (300-2500K, dlog k = +-0.2) CH3 +O =CH2O +H 8.430E+13 0.0 0.0 ---- CEC 94, k_inf=(2.40E16/0.00/439.01), (1000-3000K, dlog k=+-0.5) ---- k_0(AR)=(4.52E17/0.00/379.97), (1000-1700K, dlog k=+-0.3),1.29e+18 ---- Fcent(N2)=(0.0/1350/1.0/7830) , (1000-5000K, dFc = +- 0.1) CH4 +M(4) =CH3 +H +M(4) 2.400E+16 0.000 439.00 LOW 1.290E+18 0.000 379.97 TROE 0.000 1350.0 1.0 7830.0 ---- NEXT REACT: T.M. SLOANE CST 63, PP287-313 (1989). FORW. REAC. /2 CH3 +OH >CH3O +H 2.260E+14 0.0 64.8 CH3O +H >CH3 +OH 4.750E+16 -0.13 88.0 ---- Deters, R., Otting, M., Temps, F., Wagner, H. Gg., Laszlo, B. ---- Dobe, S., Berces, T. and Marta, F.: work in progress poster 26th Symp. ---- (1996) CH3 +OH >1CH2 +H2O 2.300E+13 0.0 0.0 1CH2 +H2O >CH3 +OH 7.900E+13 0.0 0.0 ---- ---- CEC 94. (300-1000K)(Uncertainty=3.16) ---- CH3 +OH =1CH2 +H2O 7.227E+13 0.0 11.64 ---- Wilson, C.; Balint-Kurti, G.G. New pathway for the CH3+OH->CH2+H2O reaction on a triplet surface ---- J. Phys. Chem. A:vol102. p 1625 - 1631. 1998.(200-2250K). Transition State Theory. ---- CH3 +OH =1CH2 +H2O 1.110E+03 3.0 11.64 ---- ---- Oser, H.; Stothard, N.D.; Humpfer, R.; Grotheer, H.H. Direct measurement of the reaction CH3 + OH at ambient temperature in the ---- pressure range 0.3-6.2 mbar. J. Phys. Chem. vol96. p.5359-5363. 1992. 300K (0.00-0.01Bar) ---- CH3 +OH =1CH2 +H2O 1.110E+03 3.0 11.64 ----- ---- CEC 94, k1=(3.312E+11/0/37.41), (1000-2500K, dlog k= +-0.5) ---- products: (CH2O+OH),(CH3O+O),(CH3O2) see in the mechanism ---- this is the favoured route (original Volker) ---- CH3 +O2 =CH2O +OH 1.700E+11 0.0 37.400 ---- ---- OK CEC 91: THIS IS THE FAVORED ROUTE ---- RAUL : MUUY Sensible a esta reaccion!!!, NO emplear CEC 94 ! 24Junio Pongo la segunda Borisov, pruebo solamnete! CH3 +O2 =CH2O +OH 3.300E+11 0.0 37.400 ---- Borisov, A.A.; Dragalova, E.V.; Zamanskii, V.M.; Lisyanskii, V.V.; Skachkov, G.I ---- Mechanism for the Combustion of Methane-Oxygen Mixtures in the Presence of Added N2O ---- Kinet. Catal. vol. 22. p.305. 1981.(880 - 1670 K) 1 Bar. k=(1.999E+12/0.0/54.45) ---- CH3 +O2 =CH2O +OH 1.999E+12 0.0 54.450 ---- ---- CEC 2003 ---- Yu, C.L.; Wang, C.; Frenklach, M. Chemical kinetics of methyl oxidation by molecular oxygen ---- J. Phys. Chem. vol 99. p.14377-14387, 1995. (1000-2500K) (1.45-2.53Bar) Experimental. ---- kcin=(2.228E+12/0.0/92.618) = Kmax !!!! ---- CH3 +O2 =CH2O +OH 2.228E+12 0.0 92.618 ---- ---- OK CEC 91 CH3 +HO2 =CH3O +OH 1.800E+13 0.0 0.0 ---- CEC 94, k=(3.975E13/0/238.03), ---- (500-2500K, dlog k = =-0.5 at 500K rising to -=1.0 at 2000K) ---- CH4 +O2 =CH3 +HO2 3.900E+13 0.0 238.0 ---- ---- OK W. TSANG AND R.F. HAMPSON, J. PHYS CHEM REF DATA 15, 1087, (1986) CH3 +HO2 =CH4 +O2 3.600E+12 0.0 0.0 ---- ---- OK WA 84 NO REC CEC ---- CH3 +CH3 >C2H4 +H2 1.000E+16 0.0 134.000 ---- Hidaka, Y.; Nakamura, T.; Tanaka, H.; Inami, K.; Kawano, H. ---- High temperature pyrolysis of methane in shock waves. Rates for dissociative recombination reactions of methyl ---- radicals and for propyne formation reaction. Int. J. Chem. Kinet.vol.22. p701. 1990. (1400-2200K)(2.33-3.75Bar) CH3 +CH3 =C2H4 +H2 9.998E+13 0.0 133.860 ---- ---- KINF OK WA 84 ---- CEC 94, k_inf=(3.61E13/0.0/0.00), (300-2000K, dlog k=+-0.3) ---- k_0(AR)=(1.27E41/-7.0/11.56), (300-2000K, dlog k=+-0.3),3.63e41 ---- Fcent(AR)=(0.62/73/1180/0) , (300-2000K, dFc = +- 0.1) CH3 +CH3 +M(1) =C2H6 +M(1) 3.610E+13 0.000 0.00 LOW 3.630E+41 -7.000 11.60 TROE 0.620 73.0 1180.0 0.0 ****************************************** **** 15a. CH3O Reactions ****************************************** ---- OK WA 84 /2 VALUE STEADILY CHANGING. CH3O +M(1) =CH2O +H +M(1) 5.000E+13 0.0 105.0 ---- CEC 94, k=(1.8E+13/0/0), (300-1000K, dlog k = +-0.5) CH3O +H =CH2O +H2 1.800E+13 0.0 0.0 ---- CEC 94, k=(2.170E+10/0/7.3), (300-1000K, ---- dlog k= +-0.1 at 500K rising to +-0.3 ar 300K and 1000K) CH3O +O2 =CH2O +HO2 3.000E+10 0.0 7.3 ---- 22ND SYMP NO REC CEC ---- CH2O +CH3O >CH3OH +CHO 0.600E+12 0.0 13.8 ---- CH3OH +CHO >CH2O +CH3O 0.650E+10 0.0 57.2 ---- RAUL=Tsang 1986 k=(1E11/0.0/12.45) Valor del mecanismo de Konnov ---- Konnov CH2O +CH3O =CH3OH +CHO 1.150E+11 0.0 5.2 ---- ---- CEC 94, k=(1.506E+13/0/0),(300-1000K, ---- dlog k= +-0.3 rising to +-0.7 at 1000K) ---- products: (O2+CH3),(OH+CH2O); k2/k=(0.12+-0.1) at 300K ---- k_r1=(1.32E+14/0/131.36), (300-2500K, dlog k = +-0.5) CH3O +O =OH +CH2O 1.800E+12 0.0 0.0 ---- CH3O +O >O2 +CH3 1.320E+13 0.0 0.0 ---- CH3 +O2 >O +CH3O 0.600E+14 0.0 131.0 ---- ---- Yu, C.L.; Wang, C.; Frenklach, M. Chemical kinetics of methyl oxidation by molecular oxygen ---- J. Phys. Chem. vol.99 p.14377-14387, 1995.(1550-2200K) (1.45-2.53Bar) Expe. Uncertaintly=1.48 ---- kcin=(2.951E+13/0.0/127.211) (+,-) 5kJ mol CH3 +O2 =O +CH3O 4.041E+13 0.0 122.2 ---- ---- 2003 ---- J.V. Michael, S.S. Kumaran and M.-C.Su, J. Physi. Chem. A. 103, 5942 (1999) ---- (0.3-0.6 Bar) ---- CH3 +O2 =O +CH3O 2.108E+13 0.0 135.8 ---- ---- additional reactions ---- 86 TSA/HAM, k=(1.81E+13/0/0), (300-2500K, dlog k = +-0.7) CH3O +OH =CH2O +H2O 1.810E+13 0.0 0.0 ****************************************** **** 15b. CH2OH Reactions ****************************************** ---- OK WA 84 /2 NO REC. CEC. ---- 89HID/OKI2, k(Ar)=(4.40E15/0/125.6), (1372-1842K, dlog k = +-1.0) CH2OH +M(1) =CH2O +H +M(1) 5.000E+13 0.0 105.0 ---- ---- (*) GRI 3.0 ---- H +CH2O +M( 6) =CH2OH +M( 6) 5.400E+11 0.450 15.048 ---- LOW 1.270E+32 -4.820 27.295 ---- TROE 0.719 103.0 1291.0 4160 ---- ---- k_o = 1.27E+32 T^(-4.82) exp(-6530 cal/mol /RT) cm^6/mol^2 s ---- k_inf = 5.40E+11 T^0.45 exp(-3600 cal/mol /RT) cm3/mol s ---- F_cent = (1-0.719) exp(-T/103) + 0.719 exp(-T/1291) + exp(-4160/T) ---- ---- OK WA 84 NO REC CEC (1.8E13 FOR CH3O) CH2OH +H =CH2O +H2 3.000E+13 0.0 0.0 ---- OK WA 84 NO REC. CEC ---- CH2OH +O2 =CH2O +HO2 1.000E+13 0.0 30.0 ---- CEC 94, (300-1200K, dlog k= +-0.1 at 300K rising to +-0.3 at 1200K) ---- k=(1.570E+15 -1.0 0.0+7.230E+13 0.0 14.97) CH2OH +O2 =CH2O +HO2 1.570E+15 -1.0 0.0 **** BEGIN DUPLICATE REACTION CH2OH +O2 =CH2O +HO2 7.230E+13 0.0 14.97 **** END DUPLICATE REACTION ---- additional reactions CH2OH +H =CH3 +OH 1.000E+13 0.0 0.0 ---- ERROR numerico ---- RAUL= CH3+OH=CH2OH+H k=(2.64E19/-1.8/33.724) ---- Dean, A.M. and Westmoreland, P.R. Bimolecular QRRK analyss of methyl radical reactions. ---- Int. J. Chem. Kinet. 1987, v.19, p.207 ----CH3 +OH =CH2OH +OH 2.640E+19 -1.8 33.7 ****************************************** **** 16. CH3O2 Reactions ****************************************** ---- Nota bibliografica: ---- Paso para la formacion de metanol: ---- CH3O2 + H -> CH3OOH ---- CH3OOH -> CH3O + OH ---- CH3O + H -> CH3OH !!!! Debo incluir estos pasos, (??? Referencias???)i ---- Konov: CH3OH+M->CH3O+H ---- kcin_inf=(1.380E+16/0.0/401.071) ---- kcin_low=(5.350E+16/0.0/295.94) ---- Troe =(1-0.82) exp(-T/200.0) + 0.82 exp(-T/ 1438.0) ---- ---- A. Konnov 1998 ---- ko(AR)= 1.550E-22 / -3.3 / (+,-) 0.3 -> 2.0 ---- ko(N2)= 1.600E-22 / -3.3 / (+,-) 0.3 ---- kinf= 7.800E+08 / 1.2 / (+,-) 0.3 ---- Fc = 0.466 - 1.3 E-04 * T ---- CH3 +O2 +M(1) =CH3O2 +M(1) 7.800E+08 1.2 0.0 LOW 1.650E+26 -3.300 0.0 TROE 0.495 2325.5 10.0 0.0 ---- 22ND SYMP. NO REC CEC ---- CH3O2 +CH2O >CH3O2H +CHO 0.130E+12 0.0 37.7 ---- CH3O2H +CHO >CH3O2 +CH2O 0.250E+11 0.0 42.3 ---- Konnov 1998, k=(0.13E12/0.0/37.7) ---- Konnov 1999 (Tsang,W and Hampson 1986) CH3O2 +CH2O =CH3O2H +CHO 2.000E+12 0.0 48.74 ---- ---- CH3O2 +CH3 >CH3O +CH3O 0.380E+13 0.0 -5.0 ---- CH3O +CH3O >CH3O2 +CH3 0.200E+11 0.0 0.0 ---- Konnov 1998, k=(1.5E13/0.0/-5.0) ---- Konnov 1999 (Tsang,W and Hampson 1986) CH3O2 +CH3 =CH3O +CH3O 2.400E+13 0.0 0.0 ---- ---- CH3O2 +HO2 >CH3O2H +O2 0.460E+11 0.0 -10.9 ---- CH3O2H +O2 >CH3O2 +HO2 0.300E+13 0.0 163.3 ---- CEC 94, k=(2.470E+11/0/-6.57), ---- (298-700K, dlog k= +-0.1 at 298K rising to +-0.3 at 700K) CH3O2 +HO2 =CH3O2H +O2 2.400E+11 0.0 -6.6 ---- ---- CH3O2 +CH3O2 >CH2O +CH3OH +O2 0.180E+13 0.0 0.0 ---- CH2O +CH3OH +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0 ---- CH3O2 +CH3O2 >CH3O +CH3O +O2 0.370E+13 0.0 9.2 ---- CH3O +CH3O +O2 >CH3O2 +CH3O2 0.000E+00 0.0 0.0 ---- ---- CEC 94, (298-700K, dlog k= +-0.1 at 298K increasing to +-0.3 at 700K) ---- k=(5.480E+10/0/-3.49), products: (CH3O+CH3O+O2), (CH3OH+CH2O+O2) ---- k1/k2=25exp(-1170/T) ---- Wallington, T.J., Dagaut, P., and Kurylo, M.J. ---- Ultraviolet absorption cross sections and reaction kinetics and ---- mechanisms for peroxy radicals in the gas phase. ---- Chem. Rev., 1992, v. 92, pp. 667-710. ---- RAUL= Autores incluyen la reaccion reversa,VK no!) CH3O2 +CH3O2 =CH2O +CH3OH +O2 2.800E+10 0.0 -3.3 ---- CH3O2 +CH3O2 =CH3O +CH3O +O2 2.700E+10 0.0 -3.3 ---- Tsang 1986 CH3O2 +CHO >CH3O +H +CO2 3.000E+13 0.0 0.0 CH3O2 +CH3CO >CH3 +CO2 +CH3O 2.400E+13 0.0 0.0 ---- CH3O2 +OH =O2 +CH3OH 6.000E+13 0.0 0.0 ---- ---- ****************************************** **** 17. CH4 REACTIONS ****************************************** ---- CEC 94, k=(1.325E+04 3.000 33.630), (300-2500K, dlog k = +-0.2 ---- at 300 and 2500K reducing to +-0.05 over the range 500-1000K ---- CEC 94, k_r=(6.865E+03/2.74/39.41), dlog k=+-0.3, 300-2500K ---- CH4 +H =H2 +CH3 1.330E+04 3.000 33.600 ---- ---- Espinosa-Garcia, J.; Corchado, J.C. Recalibration of two earlier potential energy surfaces for the CH4+H->CH3+H2 reaction. ---- Application of variational transition-state theory and analysis of the kinetic isotope effects using rectilinear ---- and curvilinear coordinates. J. Phys. Chem. vol.100, p16561 - 16567. 1996 ---- CH4 +H =H2 +CH3 7.107E+13 0.000 48.723 ---- ---- GRI 3.0 ---- Transition-state-theory evaluation of Rabinowitz et al. (1991), Kurylo et al. (1970), Moller et al.(1986), ---- and Kerr and Parsonage (1976). ---- Rabinowitz, M.J., Sutherland, J.W., Patterson, P.M., and Klemm, R.B. (1991) J. Phys. Chem. 95, 674. ---- kcin=(6.60E+08/1.62/45.31) ---- CH4 +H =H2 +CH3 6.600E+08 1.620 45.310 ---- ---- CEC 2003: ---- Utiliza los resultados de Rabinowitz et al, y Cohen! ---- From Cohen, International Journal Chemical Kinetics vol23, p.683 (1991) ---- kcin=(6.625E+07/1.90/44.89) dlog= (+,-) 0.2 at 1000K ---- 0.4 at 400K and 2500K CH4 +H =H2 +CH3 1.047E+08 1.900 44.890 ---- ---- J. W.Sutherland, M.C.Su and J.V.Michael. International Journal Kinetics vol 33, p.669 2001 ---- kcin=(1.767E+14/0.0/57.649) ---- CH4 +H =H2 +CH3 1.767E+14 0.000 57.649 ---- ---- CEC 94, k=(7.230E+08 1.560 35.500) ---- (300-2500K, dlog k= +-0.3 falling to +-0.15 at 2500K) CH4 +O =OH +CH3 6.923E+08 1.560 35.500 ---- CEC 94, k=(1.57E+07/1.83/11.64),(250-2500K, dlog k=+-0.07 rising to 0.15) CH4 +OH =H2O +CH3 1.000E+07 1.830 11.600 ---- NIST: Dunlop, J.R.; Tully, F.P. A kinetic study of OH radical reactions with methane and perdeuterated methane. ---- J. Phys. Chem. vol.97. p11148 - 11150. 1993. (293 - 800 K) (0.53-1Bar). ---- CH4 +OH =H2O +CH3 5.828E+04 2.580 8.980 ---- ---- Cohen N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH + alkane ---- reactions. Int. J. Chem. Kinet. vol.23 p.397 - 417. 1991.(298-1510K) ---- CH4 +OH =H2O +CH3 1.019E+08 1.600 13.054 ---- ---- ---- CEC 94, k=(9.0E+12/0.0/103.4),(600-1000K, dlog k=+-0.2 rising to +-0.3 at 1000K) CH4 +HO2 =H2O2 +CH3 1.100E+13 0.0 103.100 ---- CH4 +HO2 =H2O2 +CH3 9.000E+12 0.0 103.100 ---- CEC 94, k=(3.000E+13 0.0 -1.660), (200-700K, dlog k = +-1.0) ---- MR BERMAN, MC LIN, CHEM. PHYS. 82, 435, 1983 OK CEC 91 CH4 +CH =C2H4 +H 3.000E+13 0.0 -1.700 ---- 85BOH/DOB, k=(4.300E+12/0/42.0), 296-707K, delta=1.0 ---- Bohland, T.; Dobe, S.; Temps, F.; Wagner, H. Gg. ---- Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons ---- in the temperature range 296 K and 707 K Ber. Bunsenges. Phys. Chem. 1985,89,1110. CH4 +3CH2 =CH3 +CH3 4.300E+12 0.0 42.000 ---- ---- Wantuck, P.J.; Oldenborg, R.C.; Baughcum, S.L.; Winn, K.R. Direct measurements of methoxy removal rate ---- constants for collisions with CH4, Ar, N2, Xe, and CF4 in the temperature range 673-973 K. Symp. Int. Combust. Proc. ---- vol22. p. 973. 1989. (673-973K) (0.09Bar) ---- kcin=(1.319E+14/0/63.02) [1.198+14=(±1.99x10-10 cm3/molecule s)] ( ±3783 J/mole)/RT CH4 +CH3O =CH3OH +CH3 4.300E+12 0.0 42.000 ---- ---- Konnov 1999 ---- Tsang, 1987 ---- CH3OH +CH3 =CH4 +CH3O 1.450E+01 3.1 29.0 ---- ---- Jodkowski, J.T.; Rayez, M.-T.; Rayez, J.-C. Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol ---- 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. J. Phys. Chem. A ---- vol 103. p.3750-3765 1999. (300-2000K)(0Bar) Ab Initio ---- kcin=(3.541E21/5/23.364) [5.88x10-3 (cm3/molecule s)/ 5.00 /e-23364 (J/mole)/RT] ---- CH4 +CH3O =CH3OH +CH3 3.541E21 5.0 23.354 ---- ---- Tsang, 1986 k=(3.01E+013/0/77.32) (incert = 5 ) ---- Konnov 1999 CH4 +CH3O2 =CH3O2H +CH3 1.810E+11 0.0 77.80 ---- ---- ****************************************** **** 18. CH3OH Reactions ****************************************** ---- Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T., Pilling, M.J., ---- Troe, J., Walker, R.W., and Warnatz, J. ---- Summary table of evaluated kinetic data for combustion modeling: Supplement 1. ---- Combust. Flame, 1994, v.98, pp.59-79 ---- CEC 94, k_inf=(6.022E+13/0/0), (300-2000K, dlog k=+-0.3) ---- k_0 =(4.56E+44/-8.2/0), (1000-2000K, dlog k=+-0.5), meas. AR, given H2 ---- Fc=(0.82/200/1438/0), (1000-2000K, dFc=+-0.1) for AR CH3 +OH +M(1) =CH3OH +M(1) 6.000E+13 0.000 0.00 LOW 4.560E+44 -8.200 0.00 TROE 0.820 200.0 1438.0 0.0 ---- OK WA 84 NO REC CEC ---- CH3OH +H =CH2OH +H2 4.000E+13 0.0 25.5 ---- Raul:Konnov 1999 ---- Li, S.C., Williams, F.A. i ---- Experimental and numerical studies of two-stage methanol flames. ---- 26th Symp. (Int.) on Combustion, 1996, pp. 1017-1024. CH3OH +H =CH2OH +H2 1.640E+07 2.0 18.89 ---- Raul:Konnov 1999 NO VAN!! ---- Importante con esta reaccion el CO , H2 y H2O se disparan !!!! ---- Warnatz, J. Rate coefficients in the C/H/O system. ---- Combustion Chemistry, ed. W.C. Gardiner,Jr., pub. ---- Springer-Verlag, NY, 1984. ---- CH3OH +H =CH3O +H2 4.000E+13 0.0 25.5 ---- Aditional rxn: CH3OH+H=CH3+H2O ---- Hidaka, Y., Oki, T., Kawano, H. ---- Thermal decomposition of methanol in shock waves. ---- J. Phys. Chem., 1989, v. 93, p. 7134. ---- k=(2.0E14/0.0/22.15) ---- ---- OK WA 84 NO REC. CEC ---- CH3OH +O =CH2OH +OH 1.000E+13 0.0 19.6 ---- Raul:Konnov 1999 ---- Keil, D. G., Tanzawa, T., Skolnik, E. G., Klemm, R. B., Michael, J. V. ---- Rate Constants for the Reaction of Ground State Atomic Oxygen with Methanol ---- J. Chem. Phys., 1981, v. 75, p. 2693 CH3OH +O =CH2OH +OH 1.630E+13 0.0 21.03 ---- Konnov 1998 k=(1.300E+05 2.5 20.92) ---- Raul:Konnov 1999 ---- Warnatz, J. Rate coefficients in the C/H/O system. ---- Combustion Chemistry, ed. W.C. Gardiner, Jr., Springer-Verlag, NY , 1984. CH3OH +O =CH3O +OH 1.000E+13 0.0 19.56 ----- ---- OK WA 84 NO REC CEC ---- CH3OH +OH =CH2OH +H2O 1.000E+13 0.0 7.1 ---- Konnov 1998 ---- a.k=(3.000E+04 2.65 -3.7), b.k= (5.300E+03 2.65 -3.7) ---- Raul:Konnov 1999 ---- a.Li,S.C.; Williams,F.A. ---- Experimental and numerical studies of two-stage methanol flames. ---- 26th Symp. (Int.) on Combustion, 1996, pp. 1017-1024 ---- b.Warnatz, 1984 CH3OH +OH =CH2OH +H2O 1.440E+06 2.00 -3.5 CH3OH +OH =CH3O +H2O 1.000E+13 0.00 -7.1 ---- ---- OK WA, JE DOVE, BER BUNS GES PHYS CHEM 1040-4, 1983 NO REC. CEC ---- CH3OH +HO2 >CH2OH +H2O2 0.620E+13 0.0 81.1 ---- CH2OH +H2O2 >HO2 +CH3OH 0.100E+08 1.7 47.9 ---- ---- Tsang W. ---- Chemical kinetic data base for combustion chemistry. Part 2. Methanol. ---- J. Phys. Chem. Ref. Data, 1987, v. 16, p. 471. CH3OH +HO2 =CH2OH +H2O2 9.640E+10 0.0 52.58 ---- ---- Konnov 1999 ---- Tsang, 1987 ---- CH3OH +CH3 =CH4 +CH2OH 3.190E+01 3.17 30.0 ---- CH3OH +CH3 =CH4 +CH3O 1.450E+01 3.1 29.0 ---- ---- KG SPINDLER, HGG WAGNER, BER BUNSENGES. PHYS. CHEM. 86, 2, 1982 CH3OH +CH3 =CH4 +CH2OH 9.000E+12 0.0 41.1 ---- ---- 22ND SYMP NO REC. CEC ---- CH3O +CH3OH >CH2OH +CH3OH 0.200E+12 0.0 29.3 ---- CH2OH +CH3OH >CH3O +CH3OH 0.220E+05 1.7 45.4 ---- Tsang 1987 CH3O +CH3OH =CH2OH +CH3OH 3.000E+11 0.0 17.0 ---- ---- Tsang, 1987 CH3OH +O2 =HO2 +CH2OH 2.050E+13 0.0 189.1 ---- ---- Konnov 1998 CH3OH+CH2O=CH3O+CH3O k=( 0.153E+13 0.0 333.2) ---- Konnov 1999 ---- Hassinen, E., Koskikallio, J. Flash Photolysis of Methyl Acetate in Gas Phase. ---- Products and Rate Constants of Reactions between Methyl, Methoxy and Acetyl Radicals. ---- Acta Chem. Scand., A 1979, v. 33, p. 625. CH3O +CH3O =CH3OH +CH2O 2.320E+13 0.0 0.0 ****************************************** **** 19. CH3O2H Reactions ****************************************** ---- OK CEC 91 ---- CH3O2H =CH3O +OH 4.000E+15 0.0 180.5 ---- CEC 94, k=(6.0E+14/0/177.10) ---- (500-800K, dlog k = +-0.2 at 600K rising to +-0.5 at 500K and 800K) CH3O2H =CH3O +OH 6.000E+14 0.0 177.1 ---- RAUL:Atkinson 97 ---- k=(1.15E+12/0/-1.5884) ---- Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: ---- supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry ---- J. Phys. Chem. Ref. Data, 1997, v. 26, pp. 521-1011. ---- Comentario es MUCHO mas rapida que CEC 94 ( varios ordenes de magnitud) ---- OK CEC 89 ---- OH +CH3O2H =H2O +CH3O2 2.600E+12 0.0 0.0 ---- CEC 94, k=(7.23E+11/0/-1.08) ---- (300-1000K, dlog k = +-0.2 at 300K rising to +-0.4 at 1000K) OH +CH3O2H =H2O +CH3O2 7.300E+11 0.0 -1.0 ---- additional reactions ---- CEC 94, k=(3.300E+11/0/19.87),(300-1000K) (incertidumbre = 3.16) ---- CEC 94, k=(1.987E+13/0/19.87),(300-1000K, dlog k=+-0.3 r. to +-0.5 at 1000K) O +CH3O2H =OH +CH3O2 1.990E+13 0.0 19.90 ---- ---- Konnov 1998 (incerti = 5) ---- Tsang 1986, Chemical kinetic data base for combustion chemistry. ---- Part I. Methane and related compounds8 ---- J. Phys. Chem. Ref. Data CH3O2 +H2O2 =CH3O2H +HO2 2.400E+12 0.0 41.80 ---- ---- Tsang, 1986 k=(3.01E+12/0/57.37) (incert = 2) ---- Konnov 1999 CH3O2 +CH3OH =CH3O2H +CH2OH 1.810E+11 0.0 57.70 ****************************** **** * **** 4. C2 MECHANISM C * **** * ****************************** ****************************************** **** 20. C2H REACTIONS ****************************************** ---- OK CEC 91 ---- C2H +O =CO +CH 1.000E+13 0.0 0.0 ---- CEC 94, k= (1.024E+13/0/0), (300-2500K, dlog k = +-1.0) ---- RAUL: Devriendt, K., Peeters, J.97,(experimental) ---- Direct identification of the C2H ---- J. Phys. Chem., 1997, v. A101, pp. 2546-2551. C2H +O =CO +CH 2.410E+11 0.0 1.91 ---- ---- OK CEC 89 OK TSANG & HAMPSON 86. CHANNEL CHO + OH NOT CONSIDERED ---- C2H +O2 =HCCO +O 3.000E+12 0.0 0.0 ---- CEC 94, k=(1.81E+13/0/0), (300K, dlog k = +-0.5) ---- products: (HCCO+O),(CH+CO2),(H+CO+CO),(O+C2HO),(CHO+OH) ---- RAUL: Konnov 1999 ---- Laufer, A.H. and Lechleider, ---- R. Reaction of ethynyl radicals with O2. Rate constant for formation of CO. ---- J. Phys. Chem. 1984, v.88, p.66. C2H +O2 =HCCO +O 6.000E+11 0.0 0.0 ---- additional reactions ---- RAUL: Antigua VK k=(9.000E+12 0.0 0.0) ---- Thiesemann, H.; Taatjes, C.A (Experimental) ---- Temperature dependence of the reaction C2H(C2D)+O2 between 295 and 700 K ---- Chem. Phys. Lett,vol 270, p.580 - 586, 1997 C2H +O2 =CO2 +CH 4.700E+13 -0.16 0.0 ---- CEC 94, k=(1.81E+12/0/0), (298 K, dlog k = +- 1.0) ---- Tsang, 1986 (incert = 3) C2H +CH4 =C2H2 +CH3 1.810E+12 0.0 0.0 ****************************************** **** 20A. HCCO REACTIONS ****************************************** ---- CEC 94, k=(1.506E+14/0/0), (300-2500K, dlog k = +-0.4) ---- products: (CH2+CO), (H2+C2O), (HCCOH); only first considered here ---- RAUL: Frank, P.; Bhaskaran, K.A.; Just, Th. ---- Acetylene oxidation: The reaction C2H2 + O at high temperatures ---- 21st Symp. Int. Combust. Proc, 1988 HCCO +H =3CH2 +CO 1.500E+14 0.0 0.0 ---- CEC 94, k=(9.635E+13 0.0 0.0), (300-2500K, dlog k= +-0.3) ---- WITHOUT REVERSE REACTION (NO ELEMENTARY REACTION) ---- Frank, P., Bhaskaran, K.A., and Just, Th. ---- (1988) 21st Symposium (International) on Combustion, p. 885. HCCO +O >CO +CO +H 9.640E+13 0.0 0.0 ---- JA MILLER, RE MITCHELL, MD SMOOKE, RJ KEE, 19TH SYMP., 181-96,1982 ---- NO REC. CEC HCCO +3CH2 =C2H3 +CO 3.000E+13 0.0 0.0 ---- additional reactions ---- CEC 94, k=(2.77E+11/0/-7.15), (300-1000K, dlog k = +-1.0) ---- products: (HCCO),(H+C2O) CH +CO =HCCO 2.800E+11 0.0 -7.1 ---- ---- ---- RAUL: SPECIAL GRI3, k_inf=(5.000E+13/0/0), (300-2500K) ---- Berman et al. (1982) ---- Berman, M.R., Fleming, J.W., Harvey, A.B., and Lin, M.C. ---- (1982) 19th Symposium (International) on Combustion, p. 73. ---- Frank et al. (1988) ---- Frank, P., Bhaskaran, K.A., and Just, Th. ---- (1988) 21st Symposium (International) on Combustion, p. 885 ---- k_0 =(2.69E+28/-3.74/8.09) ---- Fc=(0.576/237/1652/5069), dFc=+-0.1 for AR **** CH +CO +M(2) =HCCO +M(2) 5.000E+13 0.000 0.00 **** LOW 2.690E+28 -3.740 8.09 **** TROE 0.576 237.0 1652.0 5069.0 ---- Original: M( 1)! Ahora M( 6) ---- SOURCE: ---- Results of an RRKM calculation based on the recombination rate data of Berman et al. (1982) ---- and the decomposition rate data of Frank et al. (1988) GRI 3.0 ---- N2 1.0 ---- H2 Enhanced by 2.0 ---- H2O Enhanced by 6.0 ---- CH4 Enhanced by 2.0 ---- CO Enhanced by 1.5 ---- CO2 Enhanced by 2.0 ---- C2H6 Enhanced by 3.0 ---- AR Enhanced by 0.7 ---- ----- N2:1.0; H2:2.0; H2O:6.0; CH4:2.0; CO:1.5; CO2:2.0; C2H6:3.0; AR:0.7 ****************************************** **** 21. C2H2 REACTIONS ****************************************** ---- P FRANK, T JUST, COMB AND FLAME 38, 231, 1980 NO REC. CEC ---- 84 WAR, k(AR)=(4.0E+16/0/447.0), (1500-3000K, dlog k = +-0.5) ---- C2H2+M(1)=C2H+H+M(1); k=(3.600E+16 0.0 446.0) ---- RAUL: SPECIAL GRI 3.0 ---- Sidhu et al. (1992) and P. Frank C and F. ---- Sidhu, S.S., Kern, R.D., Xie, K., Chen, H., and Harding, L.B. ---- (1992) Combust. Sci. Techn. 82, 101. ---- kinf=(1.000E+17/-1.000/0.00) ---- ko= (3.750E+33/-4.800/8.94) ---- Fcen=(0.646/132.0/1315.0/5566.0) H +C2H +M(1) =C2H2 +M(1) 1.000E+17 -1.000 0.00 LOW 3.750E+33 -4.800 8.94 TROE 0.646 132.0 1315.0 5566.0 ----- M_original = M(1) Ahora M(6) ----- N2:1.0; H2:2.0; H2O:6.0; CH4:2.0; CO:1.5; CO2:2.0; C2H6:3.0; AR:0.7 ----- N2 1.0 ----- H2 Enhanced by 2.0 ----- H2O Enhanced by 6.0 ----- CH4 Enhanced by 2.0 ----- CO Enhanced by 1.5 ----- CO2 Enhanced by 2.0 ----- C2H6 Enhanced by 3.0 ----- AR Enhanced by 0.7 ----- ---- JA MILLER, RE MITCHELL, MD SMOOKE, RJ KEE, 19TH SYMP., 181-96,1982 ---- NO REC CEC C2H2 +O2 =HCCO +OH 2.000E+08 1.5 126.0 ---- CEC 94, k=(6.620E+13/0/116.40),(1000-3000K, dlog k=+-1.0) ---- CEC 94, k_r=(1.080E+13/0/9.06),(300-2500K, dlog k=+-0.4) ---- RAUL:Konnov, 1999 ---- Peeters,J., Van Look,H., Ceursters,B. ---- Absolute rate coefficients of the reactions of C2H with NO and H2 between 295 ---- and 440 K. J. Phys. Chem. 1996, v. 100, pp. 15124-1512. C2H +H2 =C2H2 +H 7.880E+05 2.39 1.446 ---- CEC 94, k=(7.23E+06/2.1/6.57),(295-2500K, dlog k = +-0.2), ---- k2/k=0.7+-0.2 over the whole range ----VK CEC 1994 (branching ratio 0.3 / 0.7) C2H2 +O =3CH2 +CO 2.200E+06 2.1 6.57 C2H2 +O =HCCO +H 5.100E+06 2.1 6.57 ---- CEC 94, k=k1+k2=(6.000E+13/0.0/54.0), (1000-2000K, dlog k = +-1.0) ---- products: (h2o+c2h),(h+ch2co),(c2h2oh), last at low temp. and high press. ---- RAUL: Miller, J.A. and Melius, C.F. GRI3.0. ---- A theoretical analysis of the reaction between hydroxyl and acetylene. ---- 22nd Symp. (Int.) on Combustion, The Combustion Institute,1988, pp.1031-1039. C2H2 +OH =H2O +C2H 3.385E+07 2.0 58.52 ---- OK CEC 91 ----*****C2H2 +C2H =C4H2 +H 3.000E+13 0.0 0.0 ---- CEC 94, k=(9.0E+13/0.0/0.0), (300-2700K, ---- dlog k = +-0.2 at 298K rising to +-0.5 at 2700K) ---- RAUL: Shin, K.S.; Michael, J.V, (experimental, 296-1480K). ---- Rate constants (296-1700 K) for the reactions ... ---- J. Phys. Chem, 1991, 5864 - 5869, vol 95 C2H2 +C2H =C4H2 +H 1.810E+14 0.0 1.940 ****************************************** **** 21A. CH2CO REACTIONS ****************************************** ---- OK WA 84 NO REC CEC, k(Ar)=(3.6e+15/0/247.999), 1000-2000K, dlog k=+-0.5 ---- 86 FRA/BHA, k(Ar)=(2.30E+15/0/241.03), (1650-1850K, dlog k = +- 1.0) ---- RAUL: original k=(1.000E+16 0.0 248.0) ---- Konnov, 1999 ---- Wagner, H.Gg., and Zabel, F. (1971) Ber. Bunsenges. Phys. Chem. 71, 114. ---- Frank, P., Bhaskaran, K.A., and Just, T. (1986) J. Phys. Chem. 90, 2226. ---- kinf=(3.000E+14/0.000/296.8) ---- ko= (2.300E+15/0.000/240.78) ---- Fcen=(?) ---- ---- CH2CO +M(1) =3CH2 +CO +M(1) 3.000E+14 0.000 296.8 ---- LOW 2.300E+15 0.000 240.78 ---- TROE 0.000 000.0 000.0 000.0 ---- ---- H2O:6.2; AR:1.0; H2:2.5; CO:1.875; CO2:3.75; CH4:3.2; CH3OH:7.5 ---- ---- GRI 3.0 With the same references developed pressure dependence! ---- Original M( 1) ahora M( 6) ---- k_o = 2.69E+33 T^(-5.11) exp(-7095 cal/mol /RT) cm^6/mol^2 s ---- k_inf = 8.10E+11 T^0.5 exp(-4510 cal/mol /RT) cm3/mol s ---- F_cent = (1-0.591) exp(-T/275) + 0.591 exp(-T/1226) + exp(-5185/T) ---- 3CH2 +CO +M(1) =CH2CO +M(1) 8.100E+11 0.500 29.65 LOW 2.690E+33 -5.110 18.81 TROE 0.591 275.0 1226.0 5185.0 ---- ---- ---- Third-body efficiencies GRI 3.0: ---- N2 1.0 ---- H2 Enhanced by 2.0 ---- H2O Enhanced by 6.0 ---- CH4 Enhanced by 2.0 ---- CO Enhanced by 1.5 ---- CO2 Enhanced by 2.0 ---- C2H6 Enhanced by 3.0 ---- AR Enhanced by 0.7 ---- ---- ---- Original Konnov!: ---- CH2CO +M( 1) =3CH2 +CO +M( 1) 3.000E+14 0.000 296.8 ---- LOW 2.300E+15 0.000 240.78 ---- TROE 0.000 000.0 000.0 000.0 ---- H2O:6.2; AR:1.0; H2:2.5; CO:1.875; CO2:3.75; CH4:3.2; CH3OH:7.5 ---- ---- OK CEC 91 TWICE FASTER ---- CH2CO +H =CH3 +CO 3.600E+13 0.0 14.1 ---- CEC 94, k=(1.81E+13/0/14.13), (200-2000K, dlog k=+-0.5 rising to 1.0 at ---- 2000K), products: (ch3+co),(ch2cho),(h2+hcco); ---- k2/k is considered small, k3 may be important at high temp. ---- RAUL: original: k=(3.000E+13 0.0 14.1) ---- J. Hranisavljevic, J., Kumaran, S.S., Michael, J.V. ---- (1998) 27th Symp. (Int.) on Combustion, pp. 159-166. ---- Experimental (863-1400K) CH2CO +H =CH3 +CO 3.280E+10 0.851 11.9 ---- OK CEC 91. PRODUCTS: WA 18 TH SYMP. COMB, 369-84, 1981 ---- CH2CO +O =CHO +CHO 2.300E+12 0.0 5.7 ---- CEC 94, k=(2.29E+12/0/5.65), (230-500K, dlog k = +-0.3) ---- products: k1=(CH2O+CO),k2=(CHO+H+CO),k3=(CHO+CHO) ---- no rec. are made for the branching ratio, assume CH2CO +O =CH2O +CO 0.750E+12 0.0 5.7 CH2CO +O >CHO +H +CO 0.750E+12 0.0 5.7 CH2CO +O =CHO +CHO 0.750E+12 0.0 5.7 ---- OK CEC 91 ---- CH2CO +OH =CH2O +CHO 1.000E+13 0.0 0.0 ---- CEC 94, k=(1.024E+13/0/0), (300-2000K, dlog k= =-1.0) ---- products: (CH2OH+CO), (CH2O+CHO) ---- CH2CO+OH=>(CH3+CO2)(CH2OH+CO)(CH3O+CO)(HCO+CH2O)(HCCO+H2O)(CH2O+H+CO) ---- k(overall)= 7.20E12 0.00 0.00 D/U 296 [92OEH/TEM] ---- According to the measurements of [94GRU/NOL] ---- k(2)/k=0.60+-0.10; k(4)/k<0.02; k(5)/k<0.01; estimated: k(1)/k= 0.25 ---- here k(1)/k= 0.35 and k(2)/k= 0.65 CH2CO +OH =CH3 +CO2 2.520E+12 0.0 0.0 CH2CO +OH =CH2O +CHO 4.680E+12 0.0 0.0 ---- Dagaut 1991 CH2CO +O2 =CH2O +CO2 1.000E+08 0.0 0.0 ****************************************** **** 25. C2H3 REACTIONS ****************************************** ---- CEC 94, k_inf=(2.00E14/0.00/166.28), (500-2500K, dlog k=+-0.5) ---- k_0(AR+N2)=(4.16E41/-7.5/190.39), (500-2500K, dlog k=+-0.5) ---- 1.187e+42, 1.039e+42 scaled for H2 ---- Fcent=(0.35) , (500-2500K, dFc = +- 0.1) C2H3 +M(1) =C2H2 +H +M(1) 2.000E+14 0.000 166.3 LOW 1.000E+42 -7.500 190.4 TROE 0.350 0.0 0.0 0.0 ---- Tsang, 1986. Uncertainty = 3.0 C2H3 +OH =C2H2 +H2O 3.011E+13 0.0 0.0 ---- CEC 94, k=(1.2E+13/0/0), (300-2500K, dlog k = +-0.5) C2H3 +H =C2H2 +H2 1.200E+13 0.0 0.0 ---- CEC 94, k=(3.01E+13/0/0), (300-2000K, dlog k= +-0.5), 1/3 FOR EACH REACTION C2H3 +O =C2H2 +OH 1.000E+13 0.0 0.0 C2H3 +O =CH3 +CO 1.000E+13 0.0 0.0 C2H3 +O =CHO +3CH2 1.000E+13 0.0 0.0 ---- ---- change of reaction products, !!!! important note !!!! ---- !!!! then reaction 1CH2 + CH3 ---> C2H4 + H necessary !!!!! ---- !!!! additional reaction channel CH + H2O ---> CH2O + H (*) necessary ---- to channel CH + H2O ---> 3CH2 + OH (*) too, ---- sum of rate constant for above reaction (*) are equal to ---- recommendation of CEC1992 !!!!! ---- decreases flame velocities to correct magnitude ---- CEC 1992=1994 ---- C2H3+O2=>(CH2O+CHO);(CH2CHO+O);(C2H2+HO2) ---- k1=k-(k(CH2CHO+O)+k(C2H2+HO2)) ---- ---- RQ 15/09/2004 ---- C2H3 +O2 =CH2O +CHO 5.420E+12 0.0 0.0 **** BEGIN DUPLICATE REACTION ---- C2H3 +O2 =CH2O +CHO -7.000E+14 -0.6 13.1 **** END DUPLICATE REACTION ---- Esta reacion saca el anterior comentario de Volker. ---- ---- Mebel, A.m.; Diau, E.W.G.; Lin, M.C.; Morokuma, K. Ab initio and RRKM calculations for multichannel rate constants ---- of the C2H3 + O2 reaction . J. Am. Chem. Soc. vol.118 p.9759-9771. 1996. (300-3500K) (1.01 Bar) ---- 2.76x10-11 (cm3/molecule s) (T/298 K)-1.39 e-4240 (J/mole)/RT ---- kcin=(4.569E16/-1.39/4.24) ---- C2H3 +O2 =CH2O +CHO 4.569E16 -1.39 4.240 ---- ---- Krueger, H.; Weitz, E. Diode laser probes of vinyl radical kinetics: The reaction of C2H3 with HCl and DCl ---- J. Chem. Phys. vol 88. p.1608. 1988. (298K 0.0Bar) ---- C2H3 +O2 =CH2O +CHO 6.023E+12 0.0 0.0 ---- ---- Slagle, I.R.; Park, J.-Y.; Heaven, M.C.; Gutman, D. Kinetics of polyatomic free radicals produced by laser ---- photolysis. 3. Reaction of vinyl radicals with molecular oxygen. J. Am. Chem. Soc. vol.106. p.4356. 1984. ---- (297-602K) 0 Bar. kcin=(3.969E+12/0.0/-1.048) (+/-) 419 J/mol ---- (+,-)( 1.31x10-12 cm3/molecule s) = (+,-) 7.890E+11 ---- C2H3 +O2 =CH2O +CHO 3.969E+12 0.0 -1.0 ---- C2H3 +O2 =CH2O +CHO 3.969E+14 0.0 1.0 ---- ---- RQ 11-11-2004 ---- 2003 From Slage and Knyazev ---- kcin=(5.721E+13/0/1) ---- (+,-) 0.1 at 290K * 1.25 7.151E+13 ---- (+,-) 0.3 at 900K * 2.00 1.114E+14 ---- 15/09/2004 C2H3 +O2 =CH2O +CHO 5.721E+13 0.0 -1.0 ---- ---- Hidaka Y; Toshihide Nishimori, Kazutaka Sato, Yusuke Henmi, Rieko Okuda and Koji Inami. ---- Shock tube and modeling study of ethylene pyrolysis and oxidation. Combustion and Flame 117:755-776 1999. ---- kcin=(4.000E+21/-3.0/2.4) ---- C2H3 +O2 =CH2O +CHO 4.000E+21 -3.0 2.4 ---- ---- VK Bozzelli, J.w., Dean, A.M., J. Phys. Chem. 92, 651, (1992) ---- VK Bozzelli T(high) value ---- kcin=(2.460E+15/-0.78/13.12) C2H3 +O2 =CH2CHO +O 2.460E+15 -0.78 13.12 ---- ---- Mebel, A.m.; Diau, E.W.G.; Lin, M.C.; Morokuma, K. Ab initio and RRKM calculations for multichannel rate constants ---- of the C2H3 + O2 reaction . J. Am. Chem. Soc. vol.118 p.9759-9771. 1996. (300-3500K) (1.01 Bar) ---- 9.65x10-14 (cm3/molecule s) (T/298 K)-0.29 e-41.57 (J/mole)/RT ---- kcin=(3.0329E+11/0.29/0.04157) ---- NOTA: En el articulo original hay un error en el factor exponencial!!!! ---- En el articulo Mabel da un exponente de (-0.29) ojo valor real (+0.29)!! ---- C2H3 +O2 =CH2CHO +O 3.032E+14 0.29 0.0415 ---- ---- Mebel 1996 (Lin) (1.340E+06 1.61 -1.61) ---- Mebel, A.M., Diau, E.W.G., Lin, M.C., and Morokuma, K. ---- (1996) J. Am. Chem. Soc. 118, 9759 C2H3 +O2 =C2H2 +HO2 1.340E+06 1.61 -1.61 ****************************************** **** 22A. CH3CO REACTIONS ****************************************** ---- KINF OK WA 84 ---- CEC 94, k_inf=(5.06E11/0/28.77), (300-500K, dlog k=+-0.5),* 3.16 !!! ---- k_0(N2)=(1.52E12/0/ 0.00), (350-350K, dlog k=+-0.5),3.81e12 ---- k_0(HE)=(1.09E14/0/15.88), (400-500K, dlog k=+-0.2),3.11e14 ---- Fcent(N2)=(0.60) , (300-350K, dFc = +- 0.1) ---- Fcent(HE)=(0.50) , (400-500K, dFc = +- 0.1) CH3 +CO +M(1) =CH3CO +M(1) 5.058E+11 0.000 28.77 LOW 3.109E+14 0.000 15.88 TROE 0.600 0.0 0.0 0.0 ---- RAUL: original (CH3CO+H=CH2CO+H2) k=(2.00E+13/0.0/0.0) ---- Konnov 1999 ---- Bartels,M., Edelbuttel-Einhaus,J., and Hoyermann,K. ---- The detection of CH3CO, C2CHO by rempi/mass spectrometry and ---- the application to the study of the reactions H + CH3CO and O + CH3CO ---- 23 th Symp. (Int.) on Combustion. 1991, pp.131-138 CH3CO +H =CH2CO +H2 1.150E+13 0.0 0.0 CH3CO +H =CH3 +CHO 2.150E+13 0.0 0.0 ****************************************** **** 22B. CH2CHO REACTIONS ****************************************** ---- NOTA2:INCORPORADAS EN EL MECANISMO DE BAJA TEMPERATURA CH2CHO +O2 =CH2CO +HO2 1.100E+11 0.0 0.0 CH2CHO +O2 =CH2O +CO +OH 3.200E+10 0.0 0.0 ---- ANALOGY WITH CH3CO ---- RAUL: Rate constant from Bartels, M., Edelbuttel-Einhaus, J., and Hoyermann, K. ---- (1990) 23rd Symp. (Int'l.) on Combustion p. 131. ---- Product branching ratio from Ohmori, K., Miyoshi, A., Matsui, H., and Washida, N. ---- (1990) J. Phys. Chem. 94, 3253. ---- kcin=(2.100E+13/0.0/0.0) ---- kcin=(1.100E+13/0.0/0.0) CH2CHO +H =CH3 +CHO 2.100E+13 0.0 0.0 CH2CHO +H =CH2CO +H2 1.100E+13 0.0 0.0 ****************************************** **** 23. C2H4 REACTIONS ****************************************** ---- RAUL: GRI3 incluye dependencia de la presion, ---- k0=(1.58E+51*T^(-9.30)*exp(-408.8/RT) ---- kinf=(8.00E+12*T^0.44*exp(-371.058/RT) ---- Fcen= (1-0.735)*exp(-T/180) + 0.735*exp(-T/1035) + exp(-5417/T) ---- N2 1.0 ---- H2 Enhanced by 2.0 ---- H2O Enhanced by 6.0 ---- CH4 Enhanced by 2.0 ---- CO Enhanced by 1.5 ---- CO2 Enhanced by 2.0 ---- C2H6 Enhanced by 3.0 ---- Ar Enhanced by 0.7 ---- ---- Ref. Tsang, kinf, Troe, Zelson, L.S., Davidson, D.F., and Hanson, R.K. ---- (1994) J. Quant. Spectrosc. Radiat. Transfer 52,31. ---- ---- C2H4 +M( 6) =C2H2 +H2 +M( 6) 8.000E+12 0.440 371.06 ---- LOW 1.580E+51 -9.300 408.80 ---- TROE 0.735 180.0 1035.0 5417.0 ---- ---- CEC 94, k(AR)=(3.490E+16/0.0/299.32), (1500-3200K, dlog k = +-0.3) C2H4 +M(1) =C2H2 +H2 +M(1) 3.490E+16 0.0 300.0 ---- ---- RAUL: GRI3 incluye dependencia de la presion, ---- k0=(1.40E+30*T^(-3.86)*exp(-13.87/RT) ---- kinf=(6.08E+12*T^0.27*exp(-1.17/RT) ---- Fcen= (1-0.782)*exp(-T/207.5) + 0.782*exp(-T/2663) + exp(-6095/T) ---- Just, T., Roth, P., and Damm, R. (1977) 16th Symposium (International) on Combustion, p. 961 ---- Tanzawa, T., and Gardiner, W.C. (1980) Combust. Flame 39, 241. ---- ---- C2H3 +M( 6) +H =C2H4 +M( 6) 6.080E+12 0.270 1.1700 ---- LOW 1.400E+30 -3.860 13.870 ---- TROE 0.782 207.5 2663.0 6095.0 ----- ---- CEC 94, k(AR)=(2.590E+17/0.0/404.09),(1500-3200K, dlog k = +-0.5) C2H4 +M(1) =C2H3 +H +M(1) 7.400E+17 0.0 404.0 ---- ---- OK CEC 91 ---- C2H4 +H =C2H3 +H2 0.540E+15 0.0 62.9 ---- NIST ---- Knyazev, V.D.; Bencsura, A.; Stoliarov, S.I.; Slagle, I.R. ---- Kinetics of the C2H3 + H2 = H + C2H4 and CH3 + H2 = H + CH4 reactions ---- J. Phys. Chem, 11346-11354,vol 100, 1996 C2H4 +H =C2H3 +H2 3.808E+07 1.93 54.21 ---- ---- 2003 ---- kcin=(3.9E-22/ 3.62 / [5.67/T] ) ---- (+,-) 2.51 {400 < T < 2000K} ---- C2H4 +H =C2H3 +H2 2.349E+02 3.62 47.140 ---- ---- CEC 94 C2H4+O=>(CH2CHO+H);(CHO+CH3);(CH2O+CH2);(CH2CO+H2) ---- k=(1.355E+07/1.88/0.765) all channel,(300-2000K, dlog k=+-0.1 r. to +-0.3) ---- k1/k=0.35+-0.05, k2/k=0.6+-0.1, k3/k=0, k4/k=0.05+-0.10 at p>3torr,T>300K ---- ---- C2H4+O=> % ---- CH2CHO+H (k1/k)=0.3468 4.700E+06 4.065E+06 0.30 ---- CHO+CH3 (k2/k)=0.5977 8.100E+06 8.800E+06 0.65 k=1.355E+07 / 1.88 / 0.765 ---- CH2O+CH2 (k3/k)=0.0494 6.700E+05 ---- CH2CO+H2 (k4/k)=0.0022 3.000E+04 ---- ---- NIST k=2.253E+07 / 1.88 / 0.765 ---- ---- ---- Konnov: Sin incluir C2H3 +OH kglobal=VK, y se incluye k3/k ---- Inluyendo C2H3 +OH kglobal=2.86E+07!!!! ---- C2H4 +O =CH2CHO +H 4.700E+06 1.88 0.75 C2H4 +O =CHO +CH3 8.100E+06 1.88 0.75 C2H4 +O =CH2CO +H2 6.700E+05 1.88 0.75 C2H4 +O =CH2O +1CH2 3.000E+04 1.88 0.75 ---- ---- Mahmud, K., Marshall, P., and Fontijn, A. A high-temperature photochemistry kinetics study of the reaction of ---- O(3P) atoms with ethylene from 290 to 1510 K. J. Phys. Chem. 1987, v.91, p.1568. ---- kcin=(1.510E+07/1.88/ 14.58) ---- 1.33x10-12 (cm3/molecule s) (T/298 K)1.91 e-15631 (J/mole)/RT (1.506E+07/1.91/15.63) ---- C2H4 +O =C2H3 +OH 1.510E+07 1.88 14.58 C2H4 +O =C2H3 +OH 1.706E+07 1.91 15.63 ---- ---- NIST:Gaedtke, H.; Glaenzer, K.; Hippler, H.; Luther, K.; Troe, J. ---- Symp. Int. Combust. Proc.,1973, p.295. kcin=(6.986E+11/0/0) ---- C2H4 +O =C2H3 +OH 6.986E+11 0.0 0.00 ---- ---- Original k=(2.050E+13/0.0/24.9) ---- CEC 94, k=(2.050E+13/0.0/24.9), (650-1500K, dlog k = +-0.5) ---- 2003 = 94 ---- ---- Tully, F.P. (1988) Chem. Phys. Lett. 143, 510. ---- kcin=(2.017E+13/0.0/24.86) Hydrogen-atom abstraction from alkenes by OH. Ethene and 1-butene ---- (650-901K) (0.13-0.47 Bar) Medido!!!! C2H4 +OH =C2H3 +H2O 1.517E+13 0.0 24.86 ---- ---- Liu, A.D., Mulac, W.A., and Jordan, C.D. (1987) Int. J. Chem. Kinet. vol.92. p.3828 1988 (723-1173K) (1.01Bar) Transition Stated ---- Kinetic isotope effects in the gas-phase reaction of hydroxyl radicals with ethylene in the temperature range 343-1173K ---- and at 1-atm pressure. ---- Theory kcin=(2.095E+06[+/-1.274E+05] // 2.01 // 4.864[+/-0.097] ) Sugeridad por CEC 94 ---- C2H4 +OH =C2H3 +H2O 2.095E+06 2.0 4.864 ---- ---- GRI 3.0, Utiliza los valores de los anteriores pero desarrolla la dependencia de T (fit the polino) ---- Bott, J.F., and Cohen, N. (1991) Int. J. Chem. Kinet. 23, 1075 ---- kcin=(3.605E+06/2.0/10.45) ---- C2H4 +OH =C2H3 +H2O 3.605E+06 2.0 10.45 ---- ---- additional reactions ---- CEC 94, k=(9.65E+13/0/0), k2/k=0.2 over range 300-1000K ---- dlog k= +-0.5 at 1000K reducing to +-0.2 at 300K, d(k2/k1)=+-0.1 C2H4 +1CH2 =C3H6 7.240E+13 0.0 0.00 ---- ---- CEC 94, k=(1.32E+14/0/-1.44), (200-700K, dlog k = +- 1.0) ---- products: (C3H4+H),(3CH2+C2H3) ---- C2H4 +CH =C3H4 +H 1.343E+14 0.0 -1.44 ---- ---- NIST, Experimental ---- Berman, M.R.; Fleming, J.W.; Harvey, A.B.; Lin, M.C. Temperature Dependence of ---- the Reactions of CH Radicals with Unsaturated Hydrocarbons. Chem. Phys. vol 73. p.27.00 1982 ---- kcin=(1.343E+14/0.0/-1.44) [2.23x10-10 (±2.66x10-11 cm3/molecule s) // 0.0 // e+{1.438 (±288J/mole)/RT}] C2H4 +CH =C3H4 +H 1.343E+14 0.0 -1.44 ---- ---- Esta reaccion despelota TODO cuando se usa CEC ---- CEC 94, k=(4.16E+12/0/46.56), (400-3000K, dlog k = +-0.5) ---- Incertidumbre 3.16 ---- C2H4 +CH3 =C2H3 +CH4 4.160E+12 0.00 46.56 ---- ---- GRI 3.0 ---- kcin=(2.27E05/2/38.45) Kerr, J.A., and Parsonage, M.J. ---- (1976) Evaluated Kinetic Data on Gas Phase Hydrogen Transfer ---- Reactions of Methyl Radicals, Butterworths, London. ---- C2H4 +CH3 =C2H3 +CH4 2.270E+05 2.0 38.45 ---- ---- CEC 2003 ---- kcin=(1.000E+-16/1.56/ {8.37/T}) -> kcin=(6.023E+07/1.56/69.58) ---- (+,-) 3.16 [650-2800K] ---- C2H4 +CH3 =C2H3 +CH4 1.903E+08 1.56 69.58 ---- ---- Zhang, H-X.; Back, M.H. Rate constants for abstraction of hydrogen from ethylene ---- by methyl and ethyl radicals over the temperature range 650-770K. Int. J. Chem. Kinet. ---- vol.22 pag.21. 1990 (0.27 - 0.53 Bar)(650-776K) Uncertaintly=1.58 ---- kcin=(5.011E+11/0.0/63.024) ( ±3151 J/mole) C2H4 +CH3 =C2H3 +CH4 5.011E+11 0.0 63.02 ---- ---- Tsang 1986 ---- kcin=(4.222E+13/0.0/241.12) Uncertainty=5.0 C2H4 +O2 =C2H3 +HO2 4.222E+13 0.0 241.12 ---- ---- RQ : Incremento el consumo de fuel para obtener el valor de methanol! ---- 11-11-2004 ---- Next three Konnov: ---- kcin1=(1.000E+11 0.0 41.80) ---- kcin2=(1.200E+11 0.0 28.21) ---- kcin3=(1.000E+11 0.0 60.61) ---- Multiplico por 10 !!!!! ---- Estimated ---- kcin=(1.000E+11/0.0/41.80) ---- (2.000E+14/0.0/41.80) C2H4 +CH3O =C2H3 +CH3OH 1.000E+11 0.0 41.80 ---- ---- From Nancy mechanism: No funciona bien! ---- kcin=(1.440E+01/3.1/28.84) ---- C2H3 +CH3OH =C2H4 +CH3O 1.440E+01 3.1 28.84 ---- ---- Tsang, W. and Hampson, R.F. Chemical kinetic data base for combustion chemistry. ---- Part I. 1986, v.15, p.1087 ---- kcin=(1.200E+11/0.0/28.21) C2H4 +CH3O =CH2O +C2H5 1.200E+12 0.0 28.21 ---- Estimated ---- kcin=(1.000E+11/0.0/60.61) C2H4 +CH3O =OXIRAN +CH3 1.200E+12 0.0 60.61 ---- ---- Tsang, W. 1987. Uncetainty=5.0 ---- kcin=(3.171E+01/3.2/30.01) [4.38x10-15(cm3/molecule s)/(T/298 K)3.20/-30015 (J/mole)/RT] ---- C2H4 +CH2OH =CH3OH +C2H3 3.171E+01 3.2 30.01 C2H4 +CH2OH =CH3OH +C2H3 1.585E+02 3.2 30.01 ---- ---- ****************************************** **** 23A. CH3CHO REACTIONS ****************************************** ---- fall-off reaction ---- CEC 94, here values given only for p = 1 atm, k=(7.0E+15/0/341.7), ---- (750-1200K, dlog k= +-0.4) CH3CHO +M(1) =CH3 +CHO +M(1) 2.200E+15 0.0 342.8 LOW 5.100E+12 0.000 131.4 TROE 0.500 0.0 0.0 0.0 ---- CEC 94, k=k1+k2=(4.095E+09/1.16/10.06),(300-2000K, dlog k=+-0.1 r. to +-0.4) CH3CHO +H =CH3CO +H2 2.150E+09 1.16 10.0 CH3CHO +H =CH2CHO +H2 1.850E+09 1.16 10.0 ---- CEC 94, k=k1+k2=(5.84E+12/0/7.57),(298-1500K, dlog k= +-0.05 r. to +-0.5) CH3CHO +O =CH3CO +OH 5.600E+12 0.0 7.6 CH3CHO +O =CH2CHO +OH 2.400E+11 0.0 7.6 ---- CEC 94, k=(3.000E+13/0/163.8),(600-1100K, dlog k = +-0.5 rising to +-1.0) CH3CHO +O2 =CH3CO +HO2 4.000E+13 0.0 164.3 ---- CEC 94, k=(2.35E+10/0.73/-4.66), (250-1200K, dlog k=+-0.1 rising to +-0.3) ---- main channel -> CH3CO +H2O, other CH2CHO + H2O ---- RAUL: Se incluye el canal paralelo ---- Taylor, P.H.; Rahman, M.S.; Arif, M.; Dellinger, B.; Marshall, P. ---- Kinetic and mechanistic studies of the reaction of hydroxyl radicals ---- with acetaldehyde over an extended temperature range ---- Symp. Int. Combust. Proc, 497 - 504, 1996 (CH2CHO+H2O) ---- 295 - 600 K, Transition State!. CH3CHO +OH =CH3CO +H2O 2.300E+10 0.73 -4.6 CH3CHO +OH =CH2CHO +H2O 1.553E+06 2.20 4.18 ---- CEC 94, k=(3.0E+12/0.0/49.9), (900-1200K, dlog k= +-0.7) ---- RAUL: Konnov, 1999 ---- CH2CHO+H2O2, Borisov, A.A., Zamanskii, V.M., Konnov, A.A., and Skachkov, G.I ---- Sov. J. Chem. Phys., 1990, v.6, pp.748-755. CH3CHO +HO2 =CH3CO +H2O2 3.100E+12 0.0 50.0 CH3CHO +HO2 =CH2CHO +H2O2 3.000E+13 0.0 62.7 ---- S. MURIES . ---- CH3CHO +3CH2 =CH3CO +CH3 2.500E+12 0.0 15.9 ---- S. MURIES SAYS WA 84...original k=(2.500E+12 0.0 15.9) ---- RAUL: NIST (experimental) ---- Bohland, T., Dobe, S., Temps, F., Wagner, H. Gg ---- Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons ---- in the temperature range 296 K - 707 K. ---- Ber. Bunsenges. Phys. Chem. 1985, v.89, p.1110 CH3CHO +3CH2 =CH3CO +CH3 1.660E+12 0.0 14.67 ---- OK CEC 91 ---- CH3CHO +CH3 =CH3CO +CH4 2.000E-06 5.64 10.3 ---- CEC 94, k=(2.0E-06/5.60/10.3),(300-1250K, dlog k = +-0.3) ---- RAUL: Konnov 1999. ---- CH2CO+CH4. Berces, T. and Marta, F. ---- Reactions of methyl radicals with acetaldehyde and acetaldehyde-d1 ---- II. BEBO calculations of the temperature dependence of the rate constants ---- Int. J. Chem. Kinet., 1976, v. 8, pp. 295-306. CH3CHO +CH3 =CH3CO +CH4 2.050E-06 5.60 10.3 CH3CHO +CH3 =CH2CHO +CH4 1.580E-00 4.00 32.27 ****************************************** **** 24. C2H5 REACTIONS ****************************************** ---- CEC 94, k_inf=(3.97E09/1.28/5.40), (200-1100K, dlog k=+-0.3) ---- k_0(HE)=(4.71E18/0.00/3.16), (300- 800K, dlog k=+-0.3),1.35e19 ---- k_0(N2)=(2.79E18/0.00/3.16), (300- 800K, dlog k=+-0.3),6.98e18 ---- Fcent(HE,N2)=(0.76/40/1025/0) , (300- 800K, dFc = +- 0.1) ---- 3.970E+09 1.280 5.40 C2H4 +H +M(1) >C2H5 +M(1) 2.000E+09 1.280 5.40 LOW 6.980E+18 0.000 3.20 TROE 0.760 40.0 1025.0 0.0 ---- CEC 94, k_inf=(8.20E13/0/166.86), (700-1100K, dlog k=+-0.3) ---- k_0(C2H6)=(1.02E18/0/139.68), (700- 900K, dlog k=+-0.3),3.41e17 ---- Fcent(C2H6)=(0.75/97/1379/0) , (700-1100K, dFc = +- 0.1) ---- (*) TODA ESTA ESTA!!!!! ---- RAUL: Feng, Y., Niiranen, J.T., Bencsura, A., Knyazev, V.D., and Gutman, D ---- Weak collision effects in the reaction C2H5 = C2H4 + H ---- J. Phys. Chem., 1993, v.97, pp. 871-880. C2H5 +M(1) >C2H4 +H +M(1) 8.200E+13 0.000 166.80 LOW 3.400E+17 0.000 139.60 TROE 0.750 97.0 1379.0 0.0 ---- OK CEC 89 ---- C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0 ---- CEC 94, k = (3.61E+13/0/0), (300K-2000K, dlog k=+-0.3 at 300K rising to ---- +-0.7 at 2000K) ---- k_r=(3.01E+13/0/56.54), (1300-2500K, dlog k= +-0.6) 6!! C2H5 +H =CH3 +CH3 3.000E+13 0.0 0.0 ---- ---- CEC 94, (300-2500K, dlog k=+-0.3 from 300K to 1000K,+-0.5 from 1000K-2500K) ---- k=(6.62E+13/0/0), k2/k= 0.17+-0.2 at 300k (de acuerdo con Tsang, 1986) ---- RAUL: Konnov, 1999 ---- (global Berkeley, Konnov: 1.324E+14) ---- Rxn additional (3), ---- Slagle, I.R., Sarzynski, D., Gutman, D., Miller, J.A., and Melius, C.F ---- Kinetics of the reaction between oxygen atoms and ethyl radicals ---- J. Chem. Soc. Faraday Trans. 2 1988, v.84, p.491. . C2H5 +O =CH3CHO +H 5.300E+13 0.0 0.0 C2H5 +O =CH2O +CH3 4.240E+13 0.0 0.0 C2H5 +O =C2H4 +OH 3.460E+13 0.0 0.0 ---- CEC 94, k=(1.020E+10/0.0/-9.15), (600-1200K, dlog k = +-0.3) ---- RAUL: Atkinson, 1994. ---- Bozzelli, J.W.; Dean, A.M. ---- Chemical activation analysis of the reaction of C2H5 with O2 ---- J. Phys. Chem. vol 97 p.3313. 1990 kcin=(2.562E+19/-2.77/8.27) ---- GRI 3.0 kcin=(8.400E+11/0/16.08) ---- C2H5 +O2 =C2H4 +HO2 8.400E+11 0.0 16.08 ---- NIST 2000: Dobis, O.; Benson, S.W. Reaction of the ethyl radical with oxygen ---- at millitorr pressures at 243-368 K and a study of the Cl + HO2, ethyl + HO2, and HO2 + HO2 reactions ---- J. Am. Chem. Soc. vol.115 p.8798 - 8809 1993. C2H5 +O2 =C2H4 +HO2 1.085E+07 0.0 -23.20 ---- Bozelli, J.W.; Dean, A.M ---- Chemical activation analysis of the reaction of C2H5+O2 ---- J. Phys. Chem, 1990, 94, p.3313 C2H5 +O2 =C2H5O +O 1.155E+13 -0.2 117.2 ---- RAUL:Se incluyen en la parte de baja! ---- NIST: Atkinson, Baulch...et al. ---- J. Phys. Chem. Ref. Data 1997, vol.26, p.521 - 1011 ---- NOTA: Konnov la pone dependiente d ela presion!!!! de Wagner (experimental!) ---- C2H5 +O2 =C2H5O2 4.690E+12 0.0 0.0 ---- CEC 94, k=(1.14e+12/0/0), (300-800K, dlog k =+-0.4) C2H5 +CH3 =C2H4 +CH4 1.140E+12 0.0 0.0 ---- CEC 94, k=(1.450E+12/0.0/0.0),(300-1200, dlog k = +-0.4) ---- Incertainty:2.51 C2H5 +C2H5 =C2H4 +C2H6 1.400E+12 0.0 0.0 ****************************************** **** 30B. C2H5O REACTIONS ****************************************** ---- L BATT, INT. J. CHEM. KINET. 9, 977 (1979) NO REC CEC ---- C2H5O =CH3CHO +H 2.510E+14 0.0 97.0 ---- HEI 298-450 ---- RAUL: Heicklen, J. ---- The decomposition of alkyl nitrites and the reactions of alkoxyl radicals ---- Adv. Photochem, vol.14, p.177, 1988. C2H5O =CH3CHO +H 2.000E+14 0.0 97.3 ---- RAUL: Valores Experimentales: Caralp, F.; Devolder, P.; Fittschen, C.; ---- Gomez, N.; Hippler, H.; Mereau, R.; Rayez, M.T.; Striebel, F.; Viskolcz, B.; ---- The Thermal Unimolecular Decomposition Rate Constants of Ethoxy Radicals ---- Phys. Chem. Chem. Phys., vol.1, 2935 - 2944, 1999 ---- kcin =(1.1x1013 (s-1) e(-70300 (J/mole)/RT)), (391, 491K, 60 Bar) ---- CEC 94, k=(8.000E+13/0/90.0), (300-600K, dlog k = +-1.0, est.) ---- Incertainty= 10 ---- L Blatt,The Gas-Phase Decomposition of Alkoxy Radicals ---- Int. J. Chem. Kinet, vol. 11, p.977, 1979. ---- kcin =(1E+15*E(-90.628/RT) (+/-) 4.52 kJ/mol , (393, 433, 1 Bar) C2H5O =CH2O +CH3 1.000E+15 0.0 90.6 ---- S ZBARNIK, J HEIKLEN, REPORT AT THE 186TH AM. CHEM. SOC. NATL. ---- MEETING, WASHINGTON DC, 1983 NO REC CEC ---- C2H5O +O2 =CH3CHO +HO2 5.010E+12 0.0 16.7 ---- CEC 94, k=(6.020E+10/0/6.9), (300-1000K, dlog k = +-0.3 rising to +-0.5 at 1000K) ---- RAUL: Atkinson, R: Atmospheric reactions of alkoxy and beta-hydroxyalkoxy radicals ---- Int. J. Chem. Kinet, vol.29. 1997. p.99-111 ---- kcin = (5.99E+14/0.0/4.57) (298- 600K) ---- Intermedio entre Gut/1982 y Har 1990 parece mejor! C2H5O +O2 =CH3CHO +HO2 6.000E+10 0.0 7.0 ---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976 ---- NO REC CEC ---- C2H5O +OH =CH3CHO +H2O 1.320E+12 0.0 0.0 ---- Konnov 1998 ---- Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C. ---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling ---- Combust.Sci. and Technol., 1994, v.102, pp.21-55. C2H5O +OH =CH3CHO +H2O 1.000E+14 0.0 0.0 ---- SAME AS FOR CH3O ---- C2H5O +H =CH3CHO +H2 1.800E+13 0.0 0.0 ---- Konnov 1998 ---- Igual al anterior C2H5O +H =CH3CHO +H2 1.000E+14 0.0 0.0 ---- Konnov 1998 ---- Igual a los anteriores C2H5O +O =CH3CHO +OH 1.210E+14 0.0 0.0 ****************************************** **** 30C. CH3CHOH REACTIONS ****************************************** ---- ---- H H ---- | | ---- H--C--C--OH -> CH3CHOH ---- | | ---- H @ ---- ---- ---- SAME AS FOR CH2OH, OK WA 84 NO REC CEC ---- CH3CHOH =CH3CHO +H 1.000E+14 0.0 105.0 ---- RAUL:Natarajan, K.; Bhaskaran, K.A- ---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol ---- kcin = (4.999E+13/0.0/91.459), Proc. Int. Symp. Shock Tubes Waves ---- vol 13, p.834. 1982 (1300K-1700K) (1.01-2.03Bar) CH3CHOH =CH3CHO +H 4.999E+13 0.0 91.46 ---- ---- SAME AS FOR CH2OH, OK WA 84 NO REC CEC ---- CH3CHOH +H =CH3CHO +H2 3.000E+13 0.0 0.0 ---- RAUL:Edelbuttel-Einhaus, J.; Hoyermann, K.; Rohde, G.; Seeba, J. ---- The detection of the hydroxyethyl radical by REMPI/mass-spectrometry and ---- the application to the study of the reactions CH3CHOH + O and CH3CHOH + H ---- Symp. Int. Combust. Proc, vol. 24, p.661-668, 1992 CH3CHOH +H =CH3CHO +H2 1.999E+13 0.0 0.0 ---- ---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976 CH3CHOH +OH =CH3CHO +H2O 1.510E+13 0.0 0.0 ---- ---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976 ---- CH3CHOH +O =CH3CHO +OH 1.200E+14 0.0 0.0 ---- koriginal=( 1.200E+14 0.0 0.0) ---- RAUL: NIST, 2000, Grotheer, H.; Riekert, G.; Walter, D.; Just, Th. ---- Reactions of hydroxymethyl and hydroxyethyl radicals with molecular and atomic oxygen ---- Symp. Int. Combust. Proc, vol 22, p.963, 1989 CH3CHOH +O =CH3CHO +OH 9.034E+13 0.0 0.0 ---- ---- HH GROTHEER, FL NESBITT, RB KLEMM, J. PHYS. CHEM. 54, 984, 1976 ---- CH3CHOH +O2 =CH3CHO +HO2 1.200E+13 0.0 0.0 ---- koriginal=(1.200E+13 0.0 0.0) ---- RAUL: NIST, Natarajan, K.; Bhaskaran, K.A. ---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol ---- kcin = (9.998E+11/0.0/23.28), Proc. Int. Symp. Shock Tubes Waves (1300-1700) CH3CHOH +O2 =CH3CHO +HO2 9.998E+12 0.0 23.28 ****************************************** **** 30D. CH2CH2OH REACTIONS ****************************************** ---- BETA-DECOMP. ESTIMATED. NO REC CEC ---- Incluida en la parte de baja temperatura ---- CH2CH2OH =C2H4 +OH 1.000E+14 0.0 140.0 ---- ---- M BARTELS, K HOYERMANN, R SIEVERT, 19TH SYMP. COMB., 61, 1982 CH2CH2OH+H =CH3CHO +H2 5.000E+13 0.0 0.0 ---- ****************************************** **** 31. C2H5OH REACTIONS ****************************************** ---- DECOMP. W TSANG, INT. J. CHEM. KINET. 8, 193, 1976 ---- C2H5OH =CH3 +CH2OH 2.510E+16 0.0 353.0 ---- Konnov 1998 C2H5OH =CH3 +CH2OH 3.100E+15 0.0 337.2 C2H5OH =C2H4 +H2O 1.000E+14 0.0 320.9 ---- ---- Konnov 1998 ---- C2H5OH =C2H5 +OH 5.000E+16 0.0 381.6 ---- ---- Fagerstrom, K.; Lund, A.; Mahmoud, G.; Jodkowski, J.T.; Ratajczak, E. ---- Kinetics of the gas-phase reaction between ethyl and hydroxyl radicals. Chem. Phys. Lett. vol.208 p.321-327 1993. ---- (200-400K) (0.25-1Bar) kcin=(7.709E+13{+/-9.998E+12}/0.0/0.0) Experimental 8.708 6.709E+13 C2H5 +OH =C2H5OH 6.709E+13 0.0 0.0 ---- ---- R ATKINSON, INT. J. CHEM. KINET. 18, 555-68, 1986 NO REC CEC C2H5OH +OH =CH3CHOH +H2O 5.250E+06 2.0 1.9 ---- Natarajan, K.; Bhaskaran, K.A- ---- An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol ---- Proc. Int. Symp. Shock Tubes Waves. vol 13, p.834. 1982. ---- (1300K-1700K) (1.01-2.03Bar) ---- kcin=(2.999E13/0.0/24.943) [4.98x10-11 (cm3/molecule s) e-24943 (J/mole)/RT] ---- C2H5OH +OH =CH3CHOH +H2O 2.999E13 0.0 24.943 ---- ---- ATKINSON, 1986 ---- Ref: Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C. ---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling ---- Combust.Sci. and Technol., 1994, v.102, pp.21-55 C2H5OH +OH =C2H5O +H2O 1.150E+06 2.0 3.8 C2H5OH +OH =CH2CH2OH+H2O 8.130E+06 2.0 2.5 ---- ---- Estimated: ---- C2H5OH +O =CH3CHOH +OH 7.940E+12 0.0 13.6 ---- Herron, J.T. Evaluated chemical kinetic data for the reactions of atomic oxygen ---- O with saturated organic compounds in the gas phase ---- J. Phys. Chem. Ref. Data 1988, v.17, p.967.incer=1.5 (300-1000K0) C2H5OH +O =CH3CHOH +OH 6.000E+05 2.46 7.73 ---- ---- HH GROTHEER, FL NESBITT, RB KLEMM, J.PHYS. CHEM. 90, 2512, 1986 C2H5OH +O =C2H5O +OH 4.790E+13 0.0 28.7 ---- ---- Estimated ---- C2H5OH +O =CH2CH2OH+OH 1.000E+14 0.0 31.3 ---- RAUL: koriginal=(1.000E+14/0.0/31.3) ---- Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., Rusakov, S.A., ---- and Skachkov, G.I. High-temperature pyrolysis of ethanol ---- Sov. J. Chem. Phys., 1991, v.8, pp.121-141 C2H5OH +O =CH2CH2OH+OH 2.000E+12 0.0 39.7 ---- ---- WK ADERS, HGG WAGNER, BER. BUNSENGES, PHYS. CHEM. 77, 712, 1973 ---- NO REC CEC ---- kcin en la ref=(5.902E11/0/14.46) C2H5OH +H =C2H5 +H2O 5.900E+11 0.0 14.4 ---- ---- kcin en la ref=(4.402E12/0/19.1) C2H5OH +H =CH3CHOH +H2 4.400E+12 0.0 19.1 ---- ---- From Konnov: Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., Rusakov, S.A., ---- and Skachkov, G.I. High-temperature pyrolysis of ethanol. Sov. J. Chem. Phys., 1991, v.8, pp.121-141. ---- kcin=(2.000E+12/0.0/39.71) C2H5OH +H =CH2CH2OH+H2 2.000E+12 0.0 39.71 ---- ---- RAUL: Adicional, Tan, Y., Dagaut, Ph., Cathonnet, M., and Boettner, J.C ---- Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling ---- Combust.Sci. and Technol., 1994, v.102, pp.21-55. C2H5OH +H =C2H5O +H2 1.760E+12 0.0 19.1 ---- ---- SAME AS FOR METHANOL ---- C2H5OH +HO2 =CH3CHOH +H2O2 6.300E+12 0.0 81.1 ---- SAME AS FOR METHANOL NO REC CEC ---- k original=(6.300E+12 0.0 81.1) ---- RAUL: Konnov, 1999 Lit orig: Tan, Y., Dagaut, Ph.,.... 1994 C2H5OH +HO2 =CH3CHOH +H2O2 2.000E+13 0.0 71.1 ---- ---- Konnov, 1999 Lit Orig: Borisov, A.A....1991 C2H5OH +HO2 =CH2CH2OH+H2O2 1.000E+11 0.0 52.2 C2H5OH +HO2 =C2H5O +H2O2 1.000E+11 0.0 64.8 ---- ---- REACTION WITH CHO C2H5OH +CHO =C2H5O +CH2O 6.500E+09 0.0 57.2 ---- ---- P GRAY, AA HEROD, TRANS. FARADAY SOC. 64, 1568, 1968 NO REC CEC ---- Methyl radical reactions with ethanol and deuterated ethanols ---- kliterat=(3.981E11/0/40.57) incer=1.41 (403-523K) ---- kcin_Volker=(2.040E+11/0.0/36.40) C2H5OH +CH3 =CH3CHOH +CH4 2.040E+11 0.0 36.40 ---- ---- Konnov, 1999 ---- koriginal_Volker=(2.040E+11 0.0 36.4) ---- Borisov, A.A....1991 C2H5OH +CH3 =CH2CH2OH+CH4 3.000E+00 4.0 43.8 ---- ---- P GRAY, AA HEROD, TRANS. FARADAY SOC. 64, 1568, 1968 NO REC CEC ---- Methyl radical reactions with ethanol and deuterated ethanols ---- kliterat=(7.950E10/0/39.32) incer=1.41 (403-523K) C2H5OH +CH3 =C2H5O +CH4 7.490E+10 0.0 39.3 ---- ---- RAUL las siguientes 3 rxn no tienen referencia son iguales a Konnov!!! ---- SAME AS FOR METHANOL C2H5OH +CH3O =CH3CHOH +CH3OH 2.000E+11 0.0 29.3 C2H5OH +CH2O =C2H5O +CH3O 1.530E+12 0.0 333.2 C2H5OH +C2H5O =C2H5OH +CH3CHOH 2.000E+11 0.0 29.3 ---- ---- RAUL: Rxn adicionales Konnov, 1999 C2H5OH +O2 =CH2CH2OH+HO2 4.000E+13 0.0 212.76 C2H5OH +O2 =CH3CHOH +HO2 4.000E+13 0.0 214.02 ---- Tan, Y., Dagaut,...1994 C2H5OH +O2 =C2H5O +HO2 2.000E+13 0.0 234.0 ---- ****************************************** **** 25. C2H6 REACTIONS ****************************************** ---- OK CEC 91 ---- C2H6 +H =C2H5 +H2 1.440E+09 1.5 31.1 ---- CEC 94, k_r=(3.07/3.6/35.33), (700-1200K, ---- dlog k = +-0.2 at 700K rising to 0.6 at 1200K) ---- kcin=( 1.550E+09/1.5/31.1) ---- C2H6 +H =C2H5 +H2 1.550E+09 1.5 31.1 ---- ---- Da muy buenos resultados con esta !!! ---- GRI 3.0 Cohen, N.R. (1991) Int. J. Chem. Kin. vol23, p683. C2H6 +H =C2H5 +H2 1.150E+09 1.9 31.1 ---- ---- Esta reaccion da ERROR numerico ---- RAUL: NIST 2000. Back R. A. A search for a gas-phase free radical inversion displacement reaction at ---- a saturade carbon atom. Can. J. Chem. vol. 61. 96. 1983 ---- C2H6 +H =CH4 +CH3 5.406E+04 0.0 48.6 ---- ---- RAUL: Mahmud, K.; Marshall, P.; Fontijn, A. ---- The reaction of O, atoms with ethane: An HTP kinetics study from 300 to 1270 K ---- J. Chem. Phys, vol.88, 1988, p. 2393 (experimental, 297-1297K) ---- Kcinetica=(1.391E09/(T/298)^6.5/1.147/) ---- C2H6+O=C2H5+OH (1.150E-07/6.5/1.147) ---- C2H6 +O =C2H5 +OH 1.150E-07 6.5 1.147 ---- CEC 94, k=(1.0E+09/1.5/24.3),(300-1200K,dlog k= +-0.3 falling to +-0.15 at 1200K) C2H6 +O =C2H5 +OH 0.900E+09 1.5 24.3 ---- Miyoshi, A.; Ohmori, K.; Tsuchiya, K.; Matsui, H.Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes ---- C2H6 +O =C2H5 +OH 3.549E+06 2.4 24.3 ---- ---- Cohen, N. Int. J. Chem. Kinet. vol23. p397-417, 1991. ---- C2H6 +OH =C2H5 +H2O 3.984E+07 1.8 4.739 ---- CEC 94, k=(7.23E+06/2.0/3.62),(250-2000K, dlog k = +-0.07 rising to +-0.15 at 2000K) ---- incertidumbre=1.41 (7.200E+06/2.0/3.6) (Multiplicado por 1.41= 1.015E+07) C2H6 +OH =C2H5 +H2O 6.200E+06 2.0 3.6 ---- Tully, F.P.; Droege, A.T.; Koszykowski, M.L.; Melius, C.F. Hydrogen-atom abstraction from alkanes by OH. 2. Ethane ---- J. Phys. Chem. vol.90 p.691 1986. (293-705K)(0.8 Bar) Experimental ---- C2H6 +OH =C2H5 +H2O 5.107E+06 2.06 3.57 ---- ---- OK CEC 89 ---- C2H6 +HO2 =C2H5 +H2O2 1.700E+13 0.0 85.9 ---- CEC 94, k=(1.325E+13/0/85.6),(500-1000K, dlog k= +-0.2 rising to +-0.3 at 1000K) ---- incertidumbre = 2 (1.330E+13/0.0/85.9) ---- multiplico por 1 C2H6 +HO2 =C2H5 +H2O2 1.333E+13 0.0 85.6 ---- ---- C2H6 +HO2 =C2H5 +H2O2 1.895E+13 0.0 81.2 ---- ---- C2H6 +HO2 =C2H5 +H2O2 1.698E+13 0.0 83.00 ---- CEC 94, k=(6.0E+13/0/217.0),(500-2000K, dlog k = +-0.05 rising to +-0.1 at 2000K) ---- Uncertainty = 10 !! ---- Divido por 1 C2H6 +O2 =C2H5 +HO2 6.000E+13 0.0 217.0 ---- RAUL: Bohland, T., Dobe, S., Temps, F., and Wagner, H ---- Gg.Kinetics of the reactions between CH2(X3B1)-radicals and saturated hydrocarbons ---- in the temperature range 296 K- 707 K. Ber. Bunsenges. Phys. Chem. 1985, v.89, p.1110. ---- kcin=(6.500E+12 exp(-33.06/RT)) ---- 22ND SYMP 1988 C2H6 +3CH2 =C2H5 +CH3 2.200E+13 0.0 36.3 ---- ---- CEC 94, k=(1.51E-07/6/25.3),(300-1500K, dlog k = +-0.1 rising to +-0.2 at 1500K) ---- Uncertainty = 1.58 (1.500E-07/6.0/25.4) * 1.5 (2.370E-07) ---- C2H6 +CH3 =C2H5 +CH4 1.500E-07 6.0 25.3 ---- ---- Moller, W.; Mozzhukhin, E.; Wagner, H.Gg. High temperature reactions of CH3. 2. H-abstraction from alkanes ---- Ber. Bunsenges. Phys. Chem. vol.91. p660 1987. (1100-1400K) (0.4-0.93 Bar) Uncertainty=2.5 Absolute value measured directly! ---- kcin=(1.999E+13/0.0/56.54) C2H6 +CH3 =C2H5 +CH4 0.999E+13 0.0 56.54 ---- ---- Tsang 1986 kcin=(0.5491/4.0/34.67) Uncertainty=3.0!!! ---- C2H6 +CH3 =C2H5 +CH4 5.491E-01 4.0 34.67 ---- ---- Additional reactions ---- CEC 94, k=(1.08E+14/0/-1.10), (200-700K, dlog k = +-1.0) ---- products: (C2H4+CH3),(C3H6+H) ---- RAUL, CEC, retomo valores de la bibliografia. ---- Experimental by: Berman, M.R.; Lin, M.C. ---- Chem. Phys, vol. 82. p.435. 1983 C2H6 +CH =C2H4 +CH3 1.080E+14 0.0 -1.1 ---- RAUL: Decomposition ---- GRI3.0= Stewart, P.H., Rothem, T., and Golden, D.M. ---- (1988) 22d Symposium (International) on Combustion, p. 943 ---- k0=(1.99E+41 T^(-7.08) exp(-27.943 KJ/mol /RT) ---- kinf= 5.21E+17 T^(-0.99) exp(-6.604 KJ/mol /RT) ---- Fcent = (1-0.842) exp(-T/125) + 0.842 exp(-T/2219) + exp(-6882/T) C2H5 +H +M(3) =C2H6 +M(3) 5.420E+12 0.0 0.0 LOW 1.190E+27 -3.100 0.0 TROE 0.842 125.0 2219.0 6882.0 ---- N2= 1.0; H2= 2.0; H2O= 6.0; CH4=2.0; CO=1.5; CO2=2.0; C2H6=3.0; AR=0.7 ---- ---- RAUL NIST 2000,Hidaka Y. Shiba S, Takuma H. Suga M. Thermal decomposition of ethane in shock waves ---- Int. Journal Chemi K. vol 17. p. 441 1985. ---- T=1200-1700K P=1.72-2.53 ---- C2H6 +C2H3 =C2H4 +C2H5 1.499E+13 0.0 41.8 ---- ---- Zhang, H-X.; Back, M.H. Rate constants for abstraction of hydrogen from ethylene ---- by methyl and ethyl radicals over the temperature range 650-770K. Int. J. Chem. Kinet. vol 22. p.21.00 1990. ---- (650-770K)(0.27-0.53 Bar) Uncertainty=1.58. ---- kcin=(1.578E+11/0.0/69.192) C2H4 +C2H5 =C2H6 +C2H3 1.578E+11 0.0 69.192 ---- ---- ---- RAUL: NIST 2000. Tsang 1986. ---- Uncertainty= 3 kcin=(2.409E+11/0.0/29.68) C2H6 +CH3O =CH3OH +C2H5 2.409E+11 0.0 29.68 ---- ---- Todas estas no cambian mucho los resultados finales !!!! ---- RAUL Tsang 1986 ---- Uncertainty=3.0 ---- Divido por 3 C2H6 +C2H =C2H2 +C2H5 1.200E+12 0.0 0.0 ---- RAUL Tsang 1986 ---- Uncertainty=3.0 ---- Divido por 3 ---- ACA ---- C2H6 +C2H2 =C2H3 +C2H5 3.211E+11 0.0 19.2 ---- RAUL Tsang 1986 ---- Uncertainty=5.0 ---- Divido por 5 ---- C2H6 +CH3CO =CH3CHO +C2H5 3.612E+03 2.75 73.3 ---- RAUL Tsang 1986 ---- Uncertainty=5.0 ---- Divido por 5 C2H6 +CHO =CH2O +C2H5 9.376E+03 2.72 76.3 ---- RAUL Tsang 1986 ---- Uncertainty=3.0 ---- Divido por 3 C2H6 +CH3O2 =CH3O2H +C2H5 9.836E+10 0.0 62.5 ********************************************************************** **** **** CE MECHANIMS **** ****************************************** **** 31. C3H3 REACTIONS ****************************************** ---- Consumption of C3H3 ---- Fuente Konnov, 1999 sin referencia C3H3 +O >CO +C2H3 3.800E+13 0.0 0.0 C3H3 +O2 >HCCO +CH2O 6.000E+12 0.0 0.0 ---- RAUL: Tan, Y., Dagaut, Ph.,... 1994.... ---- k=(1.000E+13 0.0 0.0) ---- 89 MIL/BOW, (dlog k = 1.0) C3H3 +OH =C3H2 +H2O 2.000E+13 0.0 0.0 ---- RAUL: Nueva, Slagle, I.R. and Gutman, D. ---- Kinetics of the reaction of C3H3 with molecular oxygen from 293-900 K. ---- 21st Int. Symp. on Combustion, 1988, p.875.(500-900K) (0-0.1Bar) ---- konnov kcin=(3.010E+14 0.0 12.00) C3H3 +O2 =CH2CO +CHO 3.010E+14 0.0 12.00 ---- RAUL: Revizar, Quedan pendientes, Konnov 1999 ---- C3H3+O>CO+C2H2+H k=(7.000E+13 0.0 0.0) ---- C3H3+O>C2H+HCO+H k=(7.000E+13 0.0 0.0) ---- Decomposition reactions: NIST, 2000 ---- C3H3>C3H2+H k=(2.710E30/0/0)Deyerl, H.-J.; Fischer, I.; Chen, P ---- J. Chem. Phys. vol.111, p.3441-3448. 1999. Exp (298K, 1.5 Bar) ****************************************** **** 32. C3H4 REACTIONS **** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57 ****************************************** C3H4 +O =CH2O +C2H2 0.100E+13 0.0 0.0 C3H4 +O =CHO +C2H3 0.100E+13 0.0 0.0 C3H4 +OH =CH2O +C2H3 0.100E+13 0.0 0.0 C3H4 +OH =CHO +C2H4 0.100E+13 0.0 0.0 ---- RAUL: NIST, Herbrechtsmeier, P. ---- Reactions of O (3P) Atoms with Unsaturated C3-Hydrocarbons ---- Combust. Inst. European Symp.vol1. pag 13, 1973 C3H4 +O =CO +C2H4 7.829E+12 0.0 -6.69 ---- RAUL: NIST, Adusei, G.Y.; Blue, A.S.; Fontijn, A ---- The O(3P) methylacetylene reaction over wide temperature and pressure ranges ---- J. Phys. Chem. vol.100, 16921 - 16924, 1996.TS, 300-2500K, 0.1-0.7 Bar C3H4 +O =OH +C3H3 3.434E+04 2.16 20.20 ---- RAUL: Pendiente, Kannov, 1999, ---- C3H4+OH=H2O+C3H3 k=(2E07/0/4.18) Miller, Melius 1992 Combustion and Flame ****************************************** C3H4 +M(1) =H +C3H3 +M(1) 0.100E+18 0.0 293.0 C3H4 +H =CH3 +C2H2 0.200E+14 0.0 10.0 C3H4 +H =H2 +C3H3 0.100E+13 0.0 6.3 C3H4 +C2H =C2H2 +C3H3 0.100E+14 0.0 0.0 C3H4 +CH3 =C3H3 +CH4 0.200E+13 0.0 32.2 ---- RAUL: Pendiente. ---- C3H4+H=CH3+C2H2, kcin=(1.987E11/(t/298)^2.5/4.18) NIST, Hidaka, 1989 ---- C3H4+H=H2+C3H3, kcin=(2.000E+07/2.0/20.9) Konnov, 1999, from Marinov 1998 ****************************************** **** 33. C3H5 Reactions **** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57 ****************************************** ---- Raul= Revizar, usada por Konnov!!!. Tsang, 1992, ---- Pyrolysis of 1,7-octadiene and the kinetic and thermodynamic ---- stability of allyl and 4-pentenyl radicals ---- J. Phys. Chem, vol. 96. p.8378-8384, 1992 ---- kcin=(1.078E11/(T/298 K)^0.84/250.266/) ---- Uncertainty=10 expe, (300-1200K) (2.03-7.09 bar) ---- CEC 94, CH2CCH2, k_inif.=(1.5E+11/0.84/249.84), (800-1500K, dlog k = +-0.3) C3H5 =C3H4 +H 0.398E+14 0.0 293.1 ---- CEC 94, k=(1.81E+13/0/0), (300-1000K, dlog k = +-0.5) ---- Tsang, 1991, Uncertainty=3 C3H5 +H =C3H4 +H2 1.810E+13 0.0 0.0 ---- CEC 94, CH2CCH2, k=(1.02E+12/0/94.78), (600-1200K, dlog k=+-0.3 at 600K ---- rising to +-0.5 at 1200K) C3H5 +O2 =C3H4 +HO2 1.000E+12 0.0 94.7 ---- additional reactions ---- CEC 94, k=(6.02E+12/0/0), (300-1000K, dlog k = +-0.5) ---- Tsang, 1991, Uncertainty=3 C3H5 +OH =C3H4 +H2O 6.000E+12 0.0 0.00 ---- CEC 94, k_r=(1.93E+12/0/163.79), product: CH2=CHCH2 ---- (600-1000K, dlog k=+-0.3 at 800K r. to +-0.5 at 1000K and 600K) C3H6 +O2 =C3H5 +HO2 1.900E+12 0.0 163.80 ---- CEC 94, k=(2.11E+11/0/0), (500-1200K, dlog k = +-0.5) C3H5 +CH3 =C3H4 +CH4 2.100E+11 0.0 0.00 ---- CEC 94, product: CH2CCH2, k=(6.02E+10/0/-1.10), (300-1000K, dlog k= +-0.7) C3H5 +C3H5 =C3H6 +C3H4 6.020E+10 0.0 -1.10 ---- CEC 94, product: CH3CH=CH, k=(6.02E+11/0/32.42), (300-600K, dlog k= +-0.5) CH3 +C2H2 =C3H5 6.000E+11 0.0 32.40 ---- RAUL: CEC 94, Tsang, 1991. ---- product=CH2=C=CH2 k=(1.6E-12/0/66) (500-1200K, dlog k= +-0.3) C3H5 +C2H5 =C3H4 +C2H6 9.636E+11 0.0 0.548 ---- RAUL: CEC 94, Tsang, 1991. ---- k=(4.3E-12/0/66) (500-1200K, dlog k= +-0.4) C3H5 +C2H5 =C3H6 +C2H4 2.589E+12 0.0 0.548 ****************************************** **** 34. C3H6 Reactions **** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57 ****************************************** ---- Decomposition ---- RAUL: Hidaka, Y.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H. ---- Shock tube and modeling study of propene pyrolysis ---- Int. J. Chem. Kinet, vol.24, p.761 - 780, 1992 ---- 1200-1800K C3H6 =C2H2 +CH4 2.108E+12 0.0 292.67 ---- WJ Pitz, CK Westbrook, WM Proscia, FL Dryer, 22nd Symp Int Comb ---- 831-43, 1984 ---- kcin=(3.150E+15/0.0/359.0) ---- C3H6 =C2H3 +CH3 3.150E+15 0.0 359.0 ---- NIST Fahr, A.; Laufer, A.; Klein, R.; Braun, W. ---- Reaction rate determinations of vinyl radical reactions with vinyl, methyl, and hydrogen atoms ---- J. Phys. Chem. vol. 95. p.3218 - 3224. 1991 ---- 0.13 Bar 298K. Experimental!!! kcin=(7.220E13/0.0/0.0) ---- 91TSA, k=(1.1E+21/-1.2/408.856), (300-2500, delta k=3.0) C3H6 =C2H3 +CH3 1.100E+21 -1.2 408.8 ---- RAUL: Barbe, P.; Martin, R.; Perrin, D.; Scacchi, G ---- Kinetics and modeling of the thermal reaction of propene at 800 K. ---- Part I. Pure propene. Int. J. Chem. Kinet, vol 28. pag. 829-847. 1996 ---- (762-811K) (0.04-0.27 Bar) C3H6 =C3H4 +H2 3.017E+12 0.0 296.82 ---- CEC 94, k_r=(k_a_inf.+k_b)=(1.69E+14/0/0), (300-1000K, +-0.2 at 300K ---- rising to +-0.5 at 1000K), k_a=(C3H6), k_b=(C2H3+CH3) C3H6 =C3H5 +H 1.000E+13 0.0 326.0 ---- Reaction with H ---- CEC 94, k=(1.08E+05/2.4/79.40), attention welche Richtung ---- (300-1100K, dlog k = +-0.7 at 300K reducing to +-0.3 at 1100K) ---- (1.96) H +C3H6 =C3H5 +H2 0.500E+13 0.0 6.3 ---- Loser, U.; Scherzer, K.; Weber, K. ---- Abschatzung kinetischer daten fur H-transferreaktionen mit hilfe der, bond strength-bond length (BSBL) "Methode" ---- Z. Phys. Chem. (Leipzig). vol.270. p237. 1989. kcin=(6.444E+11/0.0/18.6) Theorical!! ---- Tsang 1992 kcin=(1.701E+05/2.5/10.39) ---- (2.03) H +C3H6 =C3H5 +H2 1.701E+05 2.5 10.39 ---- Original: H +C3H6 =C3H5 +H2 6.444E+11 0.0 18.60 ---- ---- NIST 2000 Hidaka, Y.; Nakamura, T.; Tanaka, H.; Jinno, A.; Kawano, H. ---- Shock tube and modeling study of propene pyrolysis ---- Int. J. Chem. Kinet. vol 24. p.761-780 1992 (1200-1800K) H +C3H6 =C2H4 +CH3 2.610E+08 1.5 8.398 ---- Reaction with O C3H6 +O =C2H4 +CH2O 5.900E+13 0.0 21.0 ---- 91 TSA, k=(1.21E+11/0.7/37.49), (300-2500K, delta=3) C3H6 +O =C2H5 +CHO 3.600E+12 0.0 0.0 C3H6 +O =CH3 +CH3CO 5.000E+12 0.0 2.5 ---- Tsang 1988 C3H6 +O =C3H5 +OH 1.741E+11 0.7 24.61 ---- Reaction with OH ---- RAUL: Tan, Y., Dagaut...1994 ---- kcin=(8.000E+12 ) No tengo mas sugerencias ! ---- C3H6 +OH =C2H5 +CH2O 7.900E+12 0.0 0.0 ---- Kcin_origi=(5.100E+12) ---- RAUL: Tan, Y., Dagaut...1994 ---- kcin=(3.400E+11) C3H6 +OH =CH3 +CH3CHO 3.400E+11 0.0 0.0 ---- RAUL: Original, kcin=(4.000E+12 0.0 0.0) ---- Baldwin, R.R.; Hisham, M.W.M.; Walker, R.W. kcin=(7.588E+12) ---- Tsang, 1991 (unicertainty=1.2) kcin=(3.119E+06/2.0/1.247) C3H6 +OH =C3H5 +H2O 2.599E+06 2.0 1.247 ---- C3H6 +OH =C3H5 +H2O 4.000E+12 0.0 0.0 ---- C3H6 +OH =C3H5 +H2O 7.588E+12 0.0 0.0 ---- REACTION WITH MISC. ---- CEC 94, k_r=(3.97E+01/3.4/97.02), (300-1200K, dlog k = +-0.4) ---- Literatura Original : ---- CH3 +C3H6 =CH4 +C3H5 8.910E+08 0.0 35.6 ---- CH4 +C3H5 =CH3 +C3H6 3.970E+01 3.4 97.02 ---- Kinsman, A.C.; Roscoe, J.M. A kinetic analysis of the photolysis of mixtures of acetone and propylene ---- Int. J. Chem. Kinet. vol.26. p.191 - 200. 1994.(296-770K) ---- 1.396E+11 0.0 36.50 CH3 +C3H6 =CH4 +C3H5 1.396E+11 0.0 36.50 ---- ---- CEC 94, k_r=(2.35E+02/3.3/83.06), (300-1200K, dlog k = +-0.4) C3H6 +C2H5 =C3H5 +C2H6 1.000E+09 0.0 38.5 ---- Tsang Uncertainty = 5.0 ---- C3H5 +H2O2 =C3H6 +HO2 3.912E+05 2.05 56.8 ****************************************** **** 35a. n-C3H7 Reactions **** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57 ****************************************** ---- Decomposition ---- ---- Mintz, K.J.; Le Roy, D.J. Kinetics of radical reactions in sodium diffusion flames ---- Can. J. Chem. vol.56 p.941 1978. Experimental: 609 - 648 K 0.03 Bar. ---- kcin=(5.040E+12/0.0/116.4) ---- N-C3H7 =CH3 +C2H4 5.040E+12 0.0 116.4 ---- ---- kcin_orig=(0.960E+14/0.0/129.8) ---- N-C3H7 =CH3 +C2H4 9.600E+13 0.0 129.8 ---- ---- Bencsura, A.; Knyazev, V.D.; Xing, S-B.; Slagle, I.R.; Gutman, D. ---- kcin=(1.228E+13/-0.1/126.4) ---- N-C3H7 =CH3 +C2H4 1.228E+14 0.0 126.4 ---- ---- 88 TSA, k=(1.26E+13/0/127.08), (300-2500K, delta=1.2) ---- / 1.2 (1.260E+13) N-C3H7 =CH3 +C2H4 1.050E+13 0.0 127.08 ---- ---- GRI 3.0 Con la anterior literatura desarrolla: M( 6) ---- CH3 +C2H4 +M( 6) =N-C3H7 +M( 6) 2.550E+06 1.60 23.820 ---- LOW 3.000E+63 -14.6 75.950 ---- TROE 0.1874 277.0 8748 7891.0 ---- ---- ko = 3.00E+63 T^(-14.60) exp( - 18170 cal/mol /RT) cm6/mol^2/s ---- kinf = 2.55E+06 T^1.60 exp(- 5700 cal/mol /RT) cm3/mol/s ---- Fcent = (1-0.1874) exp(- T / 277) + 0.1874 exp(- T / 8748) + exp(- 7891 / T) ---- N2 1.0 ---- H2 2.0 ---- H2O 6.0 ---- CH4 2.0 ---- CO 1.5 ---- CO2 2.0 ---- C2H6 3.0 ---- AR 0.7 ---- ---- 84 WAR, k=(1.0E+14/0/156.0), (500-1000K, delta=3.16) ---- N-C3H7 =H +C3H6 1.250E+14 0.0 154.9 ---- N-C3H7 =H +C3H6 1.000E+14 0.0 156.0 ---- Mintz, K.J.; Le Roy, D.J. ---- Kinetics of radical reactions in sodium diffusion flames Can. J. Chem. vol.56 p.941. 1978 ---- (567 - 609) K (0 - 0.02 ) Bar Experimental kcin=(1.110E+11/0.0/112.2) ---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions ---- J. Phys. Chem. vol89. p.4600. 1985. kcin=(1.260E+13/0.0/161.30) N-C3H7 =H +C3H6 1.260E+13 0.0 161.3 ---- ---- Tsang 1989 ---- Uncertainty = 2.0 N-C3H7 +H =C3H6 +H2 1.813E+12 0.0 0.0 ---- Uncertainty = 3.0 N-C3H7 +OH =C3H6 +H2O 2.409E+13 0.0 0.0 ---- ---- NIST 2000 : Slagle I.R.; Park, J.-Y.; Gutman, D. ---- Experimental investigation of the kinetics and mechanism of the reaction of n-propyl radicals with molecular oxygen ---- from 297 to 635 K. Symp. Int. Combust. Proc. vol 20. p.733. 1985. ---- kcin=(5.99E-14/(+,- 2.99E-14 cm3 molecule s ) ---- kcin=(3.6077E+10) ---- Reaction with O2 ---- koriginal_=(0.100E+13/0.0/20.9) ---- M. Cathonnet J.C. Boettner and H James Experimantal Study and numrical Modeling of high temperature oxidation of ---- propane and n-butane. 18 Symposium 1981. p.903. kcin=(0.100E+13/0.0/24.24). ---- N-C3H7 +O2 =C3H6 +HO2 0.100E+13 0.0 20.9 ---- Slagle, I.R.; Park, J.-Y.; Gutman, D. Symp. Int. Combust. Proc.20. p.733 1985 Experimental! ---- N-C3H7 +O2 =C3H6 +HO2 3.607E+10 0.0 0.0 ---- Tsang N-C3H7 +O2 =C3H6 +HO2 9.034E+10 0.0 0.0 ---- NIST 2000: Baker, R.R.; Baldwin, R.R.; Walker, R.W. ---- The Use of the H2 + O2 Reaction in Determining the Velocity Constants ---- of Elementary Reactions in Hydrocarbon Oxidation. Symp. Int. Combust. Proc. ---- vol. 13, p.291. 1971. Uncertainty=1.38. 753K. ---- ****No se producen cambios al incluirala**** N-C3H7 +O2 =C2H5CHO +OH 1.102E+08 0.0 0.0 ---- NIST 2000: Tsang 1986 ---- Uncertainty = 3.0 N-C3H7 +CH2OH =CH3OH +C3H6 4.818E+11 0.0 0.0 ---- x 3.0 (1.210E+12) N-C3H7 +C2H3 =C2H4 +C3H6 3.630E+12 0.0 0.0 ---- x 3.0 ( 0.253E+00) N-C3H7 +C2H6 =C2H5 +C3H8 0.759E+00 3.82 37.8 ---- NIST 2000: Tsang, 1988 ---- Uncertainty= 1.4 N-C3H7 +C2H5 =C2H4 +C3H8 1.150E+12 0.0 0.0 ---- x 1.4 (1.452E+12) N-C3H7 +C2H5 =C2H6 +C3H6 2.033E+12 0.0 0.0 ---- RAUL: Tsang, 1988 Incert=1.7 ---- N-C3H7+CH3->CH4+C3H6 ---- k=(3.07E-12/(T/298)^-0.32/0) kcin=(1.144E+13/-0.32/0.0) x1.7 = 1.944 N-C3H7 +CH3 =CH4 +C3H6 1.944E+13 -0.32 0.0 N-C3H7 +1CH2 =CH3 +C3H6 1.812E+12 0.00 0.0 ---- Uncertainty=3.0 ---- x 3.0 (6.023E+12) N-C3H7 +C2H =C2H2 +C3H6 1.806E+13 0.00 0.0 ---- NIST Thynne, J.C.J. Reactions of alkyl radicals. Part 2.-Methyl radical ---- photosensitized decomposition of n-propyl and isopropyl formates ---- Trans. Faraday Soc. vol58. p. 1394. 1962. (347-455K) (0.07-0.17Bar) ---- No se producen cambios al incluirala **** N-C3H7 +N-C3H7 =C3H6 +C3H8 1.409E+13 0.0 0.0 ****************************************** **** 35b. i-C3H7 Reactions **** CK WESTBROOK, FL DRYER, PROG EN COMB SCI 1984, VOL 10, PP1-57 ****************************************** ---- Decomposition ---- Originial kcin=( 0.630E+14 0.0 154.5) ---- Konnov 1999: kcin=(5.704E+09/1.16/3.653) (H+C3H6->I-C3H7) !!!! ---- Seakins,P.W., Robertson,S.H., Pilling,M.J., Slagle,I.R., Gmurczyk,G.W., Bencsura,A., Gutman,D., and Tsang,W. Kinetics ---- of the unimolecular decomposition of iso-C3H7: weak collision effects in helium, argon, and nitrogen. J. Phys. Chem. ---- 1993, v.97, pp.4450-4458.kcin=(3.912E+07/1.83/147.99) ---- 2.03 I-C3H7 =H +C3H6 3.912E+07 1.83 147.9 ---- 2.19 I-C3H7 =H +C3H6 6.300E+13 0.0 154.500 ---- 2.31 H +C3H6 =I-C3H7 5.704E+09 1.16 3.653 ---- ---- kcin_ori=(0.200E+11/0.0/123.5) ---- Konar R.S.; Marshall, R.M.; Purnell, J.H. kcin=(1.000E+12/0.0/144.67) ---- Initiation of isobutane pyrolysis. Trans. Faraday Soc. vol 64. p405-413 1968 (experimental) ---- (713-814K) (0.07-0.2 Bar) I-C3H7 =CH3 +C2H4 0.200E+11 0.0 123.5 ---- Reaction with O2 ---- Konnov 1999: ---- Gulati, S.K. and Walker, R.W. Arrhenius parameters for the reaction i-C3H7 + O2 -> C3H6 + HO2. J. Chem. Soc. Faraday ---- Trans. 2 1988, v.84, p.401. ---- kcin=(2.754E10/0/-8.9911) ---- CEC 94, k=(1.990E+10/0/-10.73), (600-800K, dlog k = +-0.5) ---- 2.317 I-C3H7 +O2 =C3H6 +HO2 0.100E+13 0.0 20.9 ---- 2.317 I-C3H7 +O2 =C3H6 +HO2 2.754E+10 0.0 -8.99 ---- x 1.3 I-C3H7 +O2 =C3H6 +HO2 2.587E+10 0.0 -10.73 ---- NIST 2000: Tsang, 1988 ---- Uncertainty= 1.8 ---- kcin_orig=(1.844E+13/-0.35/0.0) I-C3H7 +C2H5 =C2H4 +C3H8 1.024E+13-0.35 0.0 ---- x 1.8 I-C3H7 +C2H5 =C2H6 +C3H6 4.140E+13-0.35 0.0 ---- NIST 2000: Tsang 1986 ---- Uncertainty = 3.0 ---- x 3.0 (0.843E+00) 2.529E+00 36.5 I-C3H7 +C2H6 =C2H5 +C3H8 2.529E+00 4.2 35.5 ---- Da error numerico C2H5 +C3H8 =I-C3H7 +C2H6 1.207E+00 3.4 31.2 ---- I-C3H7 +C2H6 =C2H5 +C3H8 9.998E+10 0.0 51.04 ---- RAUL: Rexizar: Tsang, 1988 Incer= 1.5 ---- I-C3H7+CH3->CH4+C3H6 ---- k=(4.529E12/(T/298)^0.68/0) I-C3H7 +1CH2 =CH3 +C3H6 5.010E+13 0.0 0.0 I-C3H7 +CH3 =CH4 +C3H6 9.409E+10 -0.68 0.0 ---- RAUL: NIST 2000 Tsang 1988 ---- Uncertainty= 5.0 I-C3H7 +CH2OH =CH3OH +C3H6 2.891E+12 0.0 0.0 ---- RAUL: NIST 2000 Tsang 1988 ---- Uncertainty= 10.0 I-C3H7 +I-C3H7 =C3H8 +C3H6 2.115E+14 -0.70 0.0 I-C3H7 +N-C3H7 =C3H8 +C3H6 5.131E+13 -0.35 0.0 ****************************************** ****************************************** **** 39. C3H8 Reactions ****************************************** ---- CEC 94, k_inf=(1.10E17/0/353.10), (700-2000K, dlog k=+-0.3) Factor=2 ---- k_0(AR)=(7.83E18/0/271.87), (700-2000K, dlog k=+-0.5), Factor=3.16 7.530E+18 ---- Fcent(AR)=(0.76/1946/38/0) , (700-2000K, dFc = +- 0.2) Factor=1.58 C3H8 +M(1) =CH3 +C2H5 +M(1) 0.500E+17 0.000 352.80 LOW 2.830E+18 0.000 271.87 TROE 0.760 1946.0 38.0 0.0 ---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions ---- J. Phys. Chem vol.89. p.4600. 1985. ---- kcin_normal=(1.58E16/0.0/408.241) ---- kcin_iso=(6.31E+15/0.0/396.600) C3H8 =H +N-C3H7 1.580E+16 0.0 408.24 C3H8 =H +I-C3H7 6.310E+15 0.0 396.6 ---- ---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200 ---- H +C3H8 =H2 +N-C3H7 1.300E+14 0.0 40.6 ---- ---- Hidaka, Y.; Oki, T.; Kawano, H. Thermal decomposition of propane in shock waves. Int. J. Chem. Kinet ---- vol.21 p.689. 1989. ( 1.52 - 2.64 Bar)( 1100 - 1450 K) (Theorical value) ---- kcin=(9.275E+13/0.0/33.507) ---- H +C3H8 =H2 +N-C3H7 1.700E+14 0.0 30.507 ---- H +C3H8 =H2 +N-C3H7 9.275E+13 0.0 33.507 ---- ---- Tsang 1988 kcin=(1.336E+06/2.54/28.24) Uncertainty=3.0 ---- H +C3H8 =H2 +N-C3H7 1.446E+06 2.54 28.24 ---- Baldwin, R.F.; Walker, R.W. 1979 Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + ---- Alkanes. J. Chem. Soc. Faraday Trans. 1: vol. 75. p.140. 1979. H +C3H8 =H2 +N-C3H7 1.319E+14 0.0 39.24 ---- ---- CEC 94, k=(7.83E+00/3.28/36.25), (300-1200K, dlog k = +-0.5) H2 +I-C3H7 =H +C3H8 2.474E+01 3.28 36.25 ---- Tsang 1988 kcin=(1.305E+06/2.4/18.708). Error numerico ---- Hidaka, Y.; Oki, T.; Kawano, H ---- Thermal decomposition of propane in shock waves ---- Int. J. Chem. Kinet. vol 21. 689 1989. kcin=(3.101E+13/0.0/33.50)i ---- (1100-1450)K ; (1.52-2.64)Bar ---- NIST 2000: Baldwin, R.F.; Walker, R.W. ---- Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + Alkanes ---- J. Chem. Soc. Faraday Trans. 1: vol 75. p 140 1979. (753-773K) ---- kcin=(9.817E+13/0.0/33.25) ---- H +C3H8 =H2 +I-C3H7 1.000E+14 0.0 34.9 ---- ---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200 ---- C3H8 +O =N-C3H7 +OH 3.000E+13 0.0 24.1 ---- C3H8 +O =I-C3H7 +OH 2.600E+13 0.0 18.7 ---- Cohen 1986. ---- kcin_normal=(3.715E+06/2.4/23.03) ---- kcin_iso=(5.500E+05/2.5/13.14) ---- C3H8 +O =N-C3H7 +OH 3.715E+06 2.4 23.03 ---- C3H8 +O =I-C3H7 +OH 5.500E+05 2.5 13.14 ---- Tsang 1988 ---- kcin_normal=(1.930E+05/2.68/15.548) ---- kcin_iso=(4.774E+05/2.71/8.813) C3H8 +O =N-C3H7 +OH 1.930E+05 2.68 15.548 C3H8 +O =I-C3H7 +OH 4.774E+05 2.71 8.813 ---- ---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200 ---- kcin=(3.700E+12/0.0/6.9) ---- C3H8 +OH =N-C3H7 +H2O 3.700E+12 0.0 6.90 ---- NIST Hu, W-P.; Rossi, I.; Corchado, J.C.; Truhlar, D.G. ---- Molecular modeling of combustion kinetics. The abstraction of primary and secondary hydrogens by hydroxyl radical ---- J. Phys. Chem. A: vol 101 p.6911 - 6921. 1997 kcin=(2.282E+12/0.0/10.89) (295-854K) TST C3H8 +OH =N-C3H7 +H2O 2.280E+12 0.0 10.89 ---- NIST 2000: Cohen N. Are reaction rate coefficients additive? Revised transition state theory calculations for OH + ---- alkane reactions Int. J. Chem. Kinet. vol 23. p. 397 - 417. 1991. ---- kcin=(3.16E+07/1.8/3.908) ---- C3H8 +OH =N-C3H7 +H2O 3.160E+07 1.8 3.908 ---- ---- Atkinson,R.Estimations of OH radical rate constants from H-atom abstraction from C-H and O-H bonds over the temperature ---- range 250-1000K. Int. J. Chem. Kinet. vol.18, p.555, 1986 ---- C3H8 +OH =N-C3H7 +H2O 5.391E+06 2.0 1.887 ----- ---- OK WA COMB SCI AND TECHN, 1983, VOL 34, 177-200 ---- kcin=(2.800E+12/0.0/3.6) C3H8 +OH =I-C3H7 +H2O 2.800E+12 0.0 3.600 ---- NIST 2000 Cohen 1991 kcin=(7.060E+06/1.9/0.664) ---- NIST Hu, W-P.; Rossi, I.; Corchado, J.C.; Truhlar, D.G. kcin=(5.282E+12/0.0/8.156) ---- Atkinson, 1986 kcin=( 2.604E+06/2.0/1.937) ---- C3H8 +OH =I-C3H7 +H2O 2.604E+06 2.0 1.937 ---- ---- RAUL: Tsang, 1988 Reaccion directa ---- kcin normal=(4.76E04/2.6/68.92) ---- kcin iso=(9.64E03/2.6/58.20) C3H8 +HO2 =N-C3H7 +H2O2 4.760E+03 2.6 68.92 C3H8 +HO2 =I-C3H7 +H2O2 9.640E+03 2.6 58.20 ---- ---- C3H8 +HO2 =N-C3H7 +H2O2 1.140E+13 0.0 81.2 ---- N-C3H7 +H2O2 >C3H8 +HO2 0.233E+13 0.0 41.1 ---- C3H8 +HO2 =I-C3H7 +H2O2 3.400E+12 0.0 71.2 ---- I-C3H7 +H2O2 >C3H8 +HO2 0.416E+12 0.0 31.1 ---- ---- OK WA 84 ---- CH3 +C3H8 >CH4 +N-C3H7 0.400E+12 0.0 39.8 ---- CH4 +N-C3H7 >CH3 +C3H8 0.312E+13 0.0 68.9 ---- Tsang kcin=(0.903E+00/3.96/29.93) Uncertainty= 1.5 ---- Cuando se utiliza 1.13 cae el c3h8 y aumenta el ch4 ---- CH3 +C3H8 =CH4 +N-C3H7 0.903E+00 3.96 29.93 ---- NIST 2000: Mintz, K.J.; Le Roy, D.J. ---- Kinetics of radical reactions in sodium diffusion flames ---- Can. J. Chem. vol. 56. p. 941. 1978. kcin=(4.523E+13/0.0/62.44) CH3 +C3H8 =CH4 +N-C3H7 4.523E+13 0.00 62.44 ---- OK WA 84 ---- CH3 +C3H8 >CH4 +I-C3H7 0.130E+13 0.0 48.6 ---- CH4 +I-C3H7 >CH3 +C3H8 0.101E+14 0.0 77.7 ---- Tsang kcin=(1.506E+00/3.46/22.95) Uncertainty = 1.5 ---- Walker R.W. "reaction Kinetics" vol 1. p.161 S.P.R. Chemical Society 1975. ---- kcin-(6.600E+11/0.0/42.218) ---- Hidaka, Y.; Oki, T.; Kawano, H. Thermal decomposition of propane in shock waves ---- Int. J. Chem. Kinet.. vol 21. p. 689. 1989. kcin=(1.198E+12/0.0/43.07) ---- (1100 - 1450 K) (1.52 - 2.64 Bar) Buen camino !!! CH3 +C3H8 =CH4 +I-C3H7 2.259E+00 3.46 22.95 ---- CH3 +C3H8 =CH4 +I-C3H7 1.198E+12 0.0 42.07 ---- ---- OK WA 84. C3H8 +O2 >N-C3H7 +HO2 2.520E+13 0.0 205.2 N-C3H7 +HO2 >C3H8 +O2 0.208E+13 0.0 0.0 ---- C3H8 +O2 =N-C3H7 +HO2 3.969E+13 0.0 212.85 C3H8 +O2 >I-C3H7 +HO2 2.000E+13 0.0 199.3 I-C3H7 +HO2 >C3H8 +O2 0.208E+13 0.0 0.0 ---- C3H8 +O2 =I-C3H7 +HO2 3.969E+13 0.0 199.5 ---- ---- 22ND SYMP C3H8 +CH3O >N-C3H7 +CH3OH 0.300E+12 0.0 29.3 N-C3H7 +CH3OH >C3H8 +CH3O 0.122E+11 0.0 38.5 C3H8 +CH3O >I-C3H7 +CH3OH 0.300E+12 0.0 29.3 I-C3H7 +CH3OH >C3H8 +CH3O 0.122E+11 0.0 38.5 ---- ---- RAUL: Tsang, 1988 ---- Uncertainty = 3 C3H8 +CHO =N-C3H7 +CH2O 2.046E+05 2.5 77.16 C3H8 +CHO =I-C3H7 +CH2O 1.085E+07 1.9 71.17 ---- C3H8 +3CH2 =N-C3H7 +CH3 0.903E+00 3.65 29.93 C3H8 +3CH2 =I-C3H7 +CH3 1.506E+00 3.46 31.26 ---- C3H8 +CH3CO =N-C3H7 +CH3CHO 4.200E+04 2.60 73.91 C3H8 +CH3CO =I-C3H7 +CH3CHO 5.303E+06 2.00 67.93 ---- C3H8 +CH3O2 =N-C3H7 +CH3O2H 6.023E+12 0.0 81.06 C3H8 +CH3O2 =I-C3H7 +CH3O2H 1.987E+12 0.0 71.33 ---- Uncertainty = 5.0 C3H8 +CH2OH =N-C3H7 +CH3OH 1.985E+02 2.95 58.41 C3H8 +CH2OH =I-C3H7 +CH3OH 6.021E+01 2.95 50.13 ---- ---- ---- Tsang 1991 C3H8 +C3H5 =C3H6 +I-C3H7 7.869E+01 3.3 75.99 C3H8 +C3H5 =C3H6 +N-C3H7 2.352E+02 3.3 83.09 ---- Loser, U.; Scherzer, K.; Weber, K. ---- Abschatzung kinetischer daten fur H-transferreaktionen mit hilfe der, bond strength-bond length (BSBL) "Methode" ---- Z. Phys. Chem. (Leipzig) vol. 270 p.237 1989 (790 - 810k) kcin=(7.227E+11/0.0/69.17) ---- Consumen C3H6 !!!! ---- C3H8 +C3H5 =C3H6 +N-C3H7 7.227E+11 0.0 69.17 ---- C3H8 +C3H5 =C3H6 +I-C3H7 3.469E+11 0.0 56.20 ****************************** **** * **** 4. C4 MECHANISM * **** * ****************************** **** ****************************************** **** 40. C4H2 Reactions ****************************************** ---- additional reactions ---- 86MIT/NAV, (210-423K,D,1.0) C4H2 +O =C3H2 +CO 7.890E+12 0.0 5.64 ---- 84PER, (296-688K,D/U,0.3) C4H2 +OH =C3H2 +CHO 6.680E+12 0.0 -1.71 ****************************************** **** 40. C4H6 Reactions **** A CHAKIR, M CATHONET, JC BOETER, F GAILLARD, COMBUST. SCI. & TECH. **** 1989, VOL. 65, PP 207-230 ****************************************** ---- Decomposition C4H6 =C2H3 +C2H3 0.403E+20 -1.0 411.0 ---- REACTION WITH H ---- (*)C2H3 +C2H4 =C4H6 +H 0.100E+12 0.0 30.5 ---- ---- 2003 ---- kcin=(1.300E-13/0/0) -> kcin=(7.830E+10/0/0) ---- (+,-) 10 !!!! C2H4 +C2H3 =C4H6 +H 7.830E+10 0.0 0.000 ---- ---- Reaction with O C4H6 +O =C2H4 +CH2CO 0.100E+13 0.0 0.0 C4H6 +O =CH2O +C3H4 0.100E+13 0.0 0.0 ---- Reaction with OH C4H6 +OH =C2H5 +CH2CO 0.100E+13 0.0 0.0 C4H6 +OH =CH2O +C3H5 0.200E+13 0.0 0.0 C4H6 +OH =C2H3 +CH3CHO 0.500E+13 0.0 0.0 ---- RAUL: Adicionales, NIST (Butino, 1-3 Butadieno) ---- Butino -> CH3+C3H3 Dean, A.M.; J. Phys. Chem.,vol.89, p.4600, 1985 ---- kcin=(3.017E09/0/316.781) (300-2500K) ---- 1-3 -> C2H4+C2H2 Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Oshita, H.; Kawano, H. ---- Thermal isomerization and decomposition of 2-butyne in shock waves ---- J. Phys. Chem, vol. 97, p.10977 - 10983, 1993 (1100 - 1600K) ---- kcin=(6.023E09/0/313.456) ****************************************** **** 41. C4H7 Reactions **** OK CATHONET 89 ****************************************** ---- Decomposition C4H7 =C4H6 +H 0.120E+15 0.0 206.4 C4H7 =C2H4 +C2H3 0.100E+12 0.0 154.9 ---- Reaction with H H +C4H7 =C4H6 +H2 0.316E+13 0.0 0.0 ---- Reaction with O2 C4H7 +O2 =C4H6 +HO2 0.100E+12 0.0 0.0 ---- REACTION WITH ITSELF C4H7 +C4H7 =C4H6 +1-C4H8 3.160E+12 0.0 0.0 ---- Cathonnet 1981 C4H7 +C4H7 =C4H6 +2-C4H8 1.600E+12 0.0 41.8 ---- REACTION WITH CH3 C4H7 +CH3 =C4H6 +CH4 1.000E+13 0.0 0.0 ---- REACTION WITH C2H3 C4H7 +C2H3 =C4H6 +C2H4 4.000E+12 0.0 0.0 ---- REACTION WITH C2H5 C4H7 +C2H5 =C4H6 +C2H6 4.000E+12 0.0 0.0 C4H7 +C2H5 =1-C4H8 +C2H4 5.000E+11 0.0 0.0 C4H7 +C2H5 =2-C4H8 +C2H4 5.000E+11 0.0 0.0 C4H7 +C2H5 =C-2-C4H8+C2H4 5.000E+11 0.0 0.0 ---- REACTION WITH C3H5 C4H7 +C3H5 =C4H6 +C3H6 4.000E+13 0.0 0.0 ****************************************** **** 42. 1-C4H8 Reactions **** OK CATHONET 89 ****************************************** ---- ISOMERIZATION 1-C4H8 =2-C4H8 4.000E+11 0.0 251.0 1-C4H8 =C-2-C4H8 4.000E+11 0.0 251.0 ---- Decomposition 1-C4H8 =C3H5 +CH3 8.000E+16 0.0 307.4 1-C4H8 =C2H3 +C2H5 2.000E+18 -1.0 405.2 1-C4H8 =H +C4H7 0.411E+19 -1.0 407.7 ---- Reaction with H 1-C4H8 +H =C4H7 +H2 0.500E+14 0.0 16.3 ---- RAUL: Tsang, 1981 ---- Mechanism and rate constants for the reactions of hydrogen atoms ---- with isobutene at high temperatures. Symp. Int. Combust. Proc 22, 1981 1-C4H8 +H =C3H6 +CH3 1.722E+13 0.0 15.0 ---- Reaction with O 1-C4H8 +O =CH3CHO +C2H4 1.255E+12 0.0 3.6 1-C4H8 +O =CH3 +C2H5 +CO 1.625E+13 0.0 3.6 1-C4H8 +O =C3H6 +CH2O 2.505E+12 0.0 0.0 1-C4H8 +O =C4H7 +OH 1.300E+13 0.0 18.8 ---- Reaction with OH 1-C4H8 +OH =CH3CHO +C2H5 0.100E+12 0.0 0.0 1-C4H8 +OH =CH3 +C2H6 +CO 0.100E+11 0.0 0.0 1-C4H8 +OH =N-C3H7 +CH2O 6.500E+12 0.0 0.0 1-C4H8 +OH =C4H7 +H2O 1.750E+13 0.0 29.1 ---- Reaction with CH3 1-C4H8 +CH3 =C4H7 +CH4 0.100E+12 0.0 30.6 ---- REACTION WITH O2 1-C4H8 +O2 =C4H7 +HO2 4.000E+12 0.0 167.4 ---- REACTION WITH HO2 1-C4H8 +HO2 =C4H7 +H2O2 1.000E+11 0.0 71.4 ---- REACTION WITH C2H5 1-C4H8 +C2H5 =C4H7 +C2H6 0.100E+12 0.0 33.5 ---- REACTION WITH C3H5 1-C4H8 +C3H5 =C4H7 +C3H6 8.000E+10 0.0 51.9 ---- REACTION WITH C4H7 1-C4H8 +C4H7 =C4H7 +2-C4H8 3.980E+10 0.0 51.9 1-C4H8 +C4H7 =C4H7 +C-2-C4H8 3.980E+10 0.0 51.9 ---- RAUL: REvizar, IC4H8+CH3O->CH3OH+OTHER, Wallington, T.J.; Ball, J.C. ---- J. Phys. Chem, vol.99, p.3201 - 3205 1995 ****************************************** **** 42A. (TRANS-)2-C4H8 REACTIONS **** OK CATHONET 89 ****************************************** ---- Decomposition 2-C4H8 =H +C4H7 0.411E+19 -1.0 407.7 2-C4H8 =CH3 +C3H5 6.500E+14 0.0 298.3 ---- Reaction with H 2-C4H8 +H =C4H7 +H2 0.500E+13 0.0 14.6 ---- REACTION WITH O 2-C4H8 +O =C2H4 +CH3CHO 1.000E+12 0.0 0.0 2-C4H8 +O =I-C3H7 +CHO 0.603E+13 0.0 0.0 ---- REACTION WITH OH 2-C4H8 +OH =C4H7 +H2O 1.010E+14 0.0 12.8 2-C4H8 +OH =C2H5 +CH3CHO 1.514E+13 0.0 0.0 ---- Reaction with CH3 2-C4H8 +CH3 =C4H7 +CH4 0.100E+12 0.0 34.3 ****************************************** **** 42B. C-2-C4H8 REACTIONS **** OK CATHONET 89 ****************************************** ---- ISOMERIZATION C-2-C4H8 =2-C4H8 1.000E+13 0.0 259.4 ---- DECOMPOSITION C-2-C4H8 =C4H6 +H2 1.000E+13 0.0 274.1 C-2-C4H8 =C4H7 +H 4.074E+18 -1.0 407.3 C-2-C4H8 =C3H5 +CH3 1.254E+15 0.0 298.3 ---- REACTION WITH H C-2-C4H8+H =C4H7 +H2 1.000E+12 0.0 14.6 ---- REACTION WITH OH C-2-C4H8+OH =C4H7 +H2O 1.255E+14 0.0 12.8 C-2-C4H8+OH =C2H5 +CH3CHO 1.400E+13 0.0 0.0 ---- REACTION WITH O C-2-C4H8+O =I-C3H7 +CHO 6.030E+12 0.0 0.0 C-2-C4H8+O =C2H4 +CH3CHO 1.000E+12 0.0 0.0 ---- REACTION WITH CH3 C-2-C4H8+CH3 =C4H7 +CH4 1.000E+11 0.0 34.3 ************************************************************************ **** 43A. P-C4H9 REACTIONS **** OK CATHONET 89 ****************************************** ---- Decomposition ---- En base3.mch: x 1.2 (3.000E+13/0.0/130.6) ---- Original: (0.250E+14/0.0/120.6) P-C4H9 =C2H5 +C2H4 3.000E+13 0.0 120.6 P-C4H9 =1-C4H8 +H 0.126E+14 0.0 161.6 ---- NIST Kerr, J.A.; Trotman-Dickenson, A.F. ---- The reactions of alkyl radicals. Part III. n-Butyl radicals from the photolysis of n-Valeraldehyde ---- J. Chem. Soc. p.1602. 1960. (477 - 571 K) (0.02Bar) ---- kcin=(1.26E+12/0.0/113.07) P-C4H9 =C3H6 +CH3 1.260E+12 0.0 113.1 ---- Reaction with O2 P-C4H9 +O2 =1-C4H8 +HO2 0.100E+13 0.0 8.4 ---- ---- Thynne, J.C.J. Reactions of alkyl radicals.Trans. Faraday Soc. vol58. p.1533. 1962.(348-459K);(0.07-0.12Bar) ---- Reaction with CH3 (1.408E+13) P-C4H9 +CH3 =1-C4H8 +CH4 1.408E+13 0.0 0.0 ****************************************** **** 43B. S-C4H9 REACTIONS **** OK CATHONET 89 ****************************************** ---- DECOMPOSITION S-C4H9 =1-C4H8 +H 0.200E+14 0.0 169.2 S-C4H9 =2-C4H8 +H 5.000E+13 0.0 158.7 S-C4H9 =C-2-C4H8+H 5.000E+13 0.0 158.7 ---- En Base_3: (3.600E+14/0.0/139.0) S-C4H9 =C3H6 +CH3 3.600E+14 0.0 139.0 ---- CEC 94, k_inf=(7.23E13/-0.37/0.00), (200-1500K, dlog k=+-0.5) ---- k_0(N2)=(5.53E19/-0.76/0.00), (250-1400K, dlog k=+-0.4) ---- Fcent(N2)=(0.50) , (200-1500K, dFc = +- 0.2) ---- S-C4H9 +M(1) =C3H6 +CH3 +M(1) 2.730E+10 1.110 130.49 ---- LOW 1.470E+52 -10.60 146.49 ---- TROE 0.526 607.0 11.0 2870.0 ---- ---- NIST Gang, J.; Pilling, M.J.; Robertson, S.H. ---- Asymmetric internal rotation: application to the 2-C4H9=CH3 + C3H6 reaction ---- J. Chem. Soc. Faraday Trans. vol. 93. p.1481 - 1491. 1997. kcin=(2.670E+10/1.060/129.7) ---- NIST: Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.; Gutman, D. ---- Experimental and theoretical study of the sec-C4H9 = CH3 + C3H6 reaction ---- J. Phys. Chem. vol. 98. p.11099 - 11108. 1994 ---- kcin=(2.725E+10/1.11/130.53) ---- En Base_3: multiplico x 1.5 (4.087E+10/1.120/130.5) pero la omito !!! ---- S-C4H9 =C3H6 +CH3 2.725E+10 1.110 130.5 ---- Gang, J.; Pilling, M.J.; Robertson, S.H.J. Chem. Soc. Faraday Trans. ---- vol. 93. p.1481 - 1491. 1997 Demasiado consumo de C4H10 ---- S-C4H9 =C3H6 +CH3 2.670E+10 1.060 129.7 ---- Reaction with O2 S-C4H9 +O2 =1-C4H8 +HO2 0.200E+13 0.0 18.8 S-C4H9 +O2 =2-C4H8 +HO2 0.200E+14 0.0 17.8 S-C4H9 +O2 =C-2-C4H8+HO2 0.200E+14 0.0 17.8 ---- Reaction with CH3 ---- kcin= (kcin_PC4H9+CH3)*8E-02 (Miyoshi, M.; Brinton, R.K;Gaseous reaction of methyl radicals with propylene) ---- J. Chem. Phys vol36.p.3019 1962. ---- En el original la omito. ---- En Base_3 entra ---- Original=(1.184E+12/0.0/0.0) S-C4H9 +CH3 =2-C4H8 +CH4 1.184E+12 0.0 0.0 ---- ****************************************** **** 45. C4H10 REACTIONS ****************************************** ---- OK CEC 91 ---- (300-1200K) Uncertaintly=2.0 kcin_Literatura=(1.150E+13/0.0/0.0) ---- Divido por 1.42: ---- C2H5 +C2H5 =C4H10 8.000E+12 0.0 0.0 ---- Divido por 2: C2H5 +C2H5 =C4H10 5.752E+12 0.0 0.0 ---- ---- Dean, A.M. Predictions of pressure and temperature effects upon radical addition and recombination reactions ---- J. Phys. Chem. vol.89. p.4600 1985 ---- C4H10 =C2H5 +C2H5 7.940E+16 0.0 335.9 ---- OK WJ PITZ, CK WESTBROOK, COMB & FLAME 63, 113-33, 1986 C4H10 >N-C3H7 +CH3 0.100E+18 0.0 357.6 N-C3H7 +CH3 >C4H10 0.200E+14 0.0 0.0 ---- RAUL: NIST, Dean, A.M. ---- Predictions of pressure and temperature effects upon radical addition ---- and recombination reactions. J. Phys. Chem. vol.89. p. 4600, 1985. ---- 300-2500K (RRKM) C4H10 =P-C4H9 +H 9.516E+07 0.0 409.9 C4H10 =S-C4H9 +H 6.023E+07 0.0 397.4 ---- ---- OK WA 22ND SYMP. 89 ---- C4H10 +H >P-C4H9 +H2 0.563E+08 2.0 32.2 ---- P-C4H9 +H2 >C4H10 +H 0.912E+13 0.0 60.6 ---- C4H10 +H >S-C4H9 +H2 0.175E+08 2.0 20.9 ---- S-C4H9 +H2 >C4H10 +H 0.154E+14 0.0 66.5 ---- ---- Baldwin, R.F.; Walker, R.W. Rate Constants for Hydrogen + Oxygen System, and for H Atoms and OH Radicals + Alkanes ---- J. Chem. Soc. Faraday Trans. 1: vol.75. p. 140. 1979. (753 - 773 K) Theoretical ---- x 2 (1.319E+14_N;1.957E+14_S) C4H10 +H =P-C4H9 +H2 2.638E+14 0.0 39.2 C4H10 +H =S-C4H9 +H2 1.957E+14 0.0 33.26 ---- ---- Nicholas, J.E.; Vaghijiani, G.L Reaction probabilities, cross sections, and threshold energies in the reaction of ---- isotopically pure H atoms and n-butane. J. Chem. Phys.. vol 91. p.5121 1989. (250-500K) ---- Es muuuuuy rapida !!!!!!! ---- C4H10 +H =P-C4H9 +H2 3.800E+13 0.0 50.968 ---- C4H10 +H =S-C4H9 +H2 2.302E+13 0.0 33.008 ---- ---- OK WA 22ND SYMP. 89 C4H10 +O >P-C4H9 +OH 0.113E+15 0.0 32.9 P-C4H9 +OH >C4H10 +O 0.148E+14 0.0 51.3 C4H10 +O >S-C4H9 +OH 0.562E+14 0.0 21.8 S-C4H9 +OH >C4H10 +O 0.735E+13 0.0 40.2 ---- ---- Cohen, N. Westberg,K.R. The use of transition state theory to extrapole rate coefficients for reactions of O atoms with alkanes. ---- Int. Journal Chem Kinetics. vol 18 p.99. 1986. (250-2000K) ---- kcin_N=(4.252E12/(T/298)2.4/23.031) ---- kcin_S=(1.162E12/(T/298)2.6/10.809) ---- C4H10 +O =P-C4H9 +OH 4.903E+06 2.4 23.03 ---- C4H10 +O =S-C4H9 +OH 4.289E+05 2.6 10.80 ---- ---- Herron, J. T. Huie. R.E. Rate constants for the reactions of atomic oxygen (O3p) with organic compounds in the gas phase. Journal ---- Physc.Chem.Ref. Data. vol 2. p.467-518.1973. (298-1000K) Uncertaintly=1.3. Theorycal. kcin_N=(2.999E13/0.0/24.278) ---- C4H10 +O =P-C4H9 +OH 2.999E+13 0.0 24.28 ---- C4H10 +O =S-C4H9 +OH 4.435E+13 0.0 20.04 ---- ---- Droege, A.T.; Tully, F.P. Hydrogen-atom abstraction from alkanes by OH. 5. n-Butane ---- J. Phys. Chem. vol90. p.5937. 1987. (294 - 509 K); 0.53 Bar. (3.317E-03) ---- 4.137E+07_N;7.224E+07_S (dividi por 2!!!) ---- Original: (4.130E+07/ 1.73/3.151) ---- C4H10 +OH >P-C4H9 +H2O 2.068E+07 1.73 3.151 ---- P-C4H9 +H2O >C4H10 +OH 0.717E+08 1.7 93.3 ---- C4H10 +OH >S-C4H9 +H2O 3.612E+07 1.64 -1.031 ---- S-C4H9 +H2O >C4H10 +OH 0.128E+09 1.6 89.1 ---- ---- RAUL: Tambien. Cohen, N. ---- Are reaction rate coefficients additive? ---- Revised transition state theory calculations for OH + alkane reactionsn ---- Int. J. Chem. Kinet. vol.23. p.397-417, 1991. ---- kcin_N=(9.395E+11/(T/298 K)1.80/3.991) ---- kcin_S=(4.758E+11/(T/298 K)2.00/2.494) ---- Muy rapida (demasiado consumo de C4H10) ---- C4H10 +OH =P-C4H9 +H2O 3.306E+07 1.8 3.991 ---- C4H10 +OH =S-C4H9 +H2O 5.358E+06 2.0 2.494 ---- ---- Atkinson: (3.00E03) ---- C4H10 +OH =P-C4H9 +H2O 5.391E+06 2.0 1.887 ---- C4H10 +OH =S-C4H9 +H2O 5.202E+06 2.0 2.569 ---- ---- Cathonnet, J.C. Boettner and H James. 18 Sympo. Int. Comb. 1981. p903-913. ---- kcin_N=(3.692E+12/0.0/6.843) ---- kcin_S=(5.643E+12/0.0/3.559) C4H10 +OH =P-C4H9 +H2O 3.000E+12 0.0 6.843 C4H10 +OH =S-C4H9 +H2O 5.643E+12 0.0 3.559 ---- ---- RAUL: NIST: Pitz, W.J.; Westbrook, C.K ---- Chemical kinetics of the high pressure oxidation of n-butane and its relation to engine knock ---- CandF. vol.63, p.113-133, 1986. C4H10 +HO2 >P-C4H9 +H2O2 1.140E+13 0.0 81.2 P-C4H9 +H2O2 >C4H10 +HO2 0.458E+13 0.0 41.1 ---- C4H10 +HO2 >S-C4H9 +H2O2 6.800E+12 0.0 71.2 S-C4H9 +H2O2 >C4H10 +HO2 0.163E+13 0.0 31.0 ---- ---- OK WA 22ND SYMP. 89 C4H10 +O2 >P-C4H9 +HO2 0.250E+14 0.0 205.2 P-C4H9 +HO2 >C4H10 +O2 0.250E+13 0.0 -9.2 C4H10 +O2 >S-C4H9 +HO2 0.400E+14 0.0 199.3 S-C4H9 +HO2 >C4H10 +O2 0.407E+13 0.0 -15.2 ---- OK CATHONET 89 C4H10 +CH3O >P-C4H9 +CH3OH 0.300E+12 0.0 29.3 P-C4H9 +CH3OH >C4H10 +CH3O 0.122E+11 0.0 209.4 C4H10 +CH3O >S-C4H9 +CH3OH 0.600E+12 0.0 29.3 S-C4H9 +CH3OH >C4H10 +CH3O 0.244E+11 0.0 209.4 -------- ---- Yampol'skii, Yu.P. Reactivity of Primary and Secondary Carbon-Hydrogen Bonds in Radical Processes ---- React. Kinet. Catal. Lett. vol.2 p.449. 1975. ---- kcin=(5.011E+11/0.0/56.9) Estimated. !!!Theory. ---- C4H10 +CH3 =P-C4H9 +CH4 5.011E+11 0.0 56.9 ---- Anterior multiplicada por 2! C4H10 +CH3 =P-C4H9 +CH4 1.094E+12 0.0 56.9 ---- C4H10 +CH3 =S-C4H9 +CH4 4.270E+11 0.0 43.9 ---- Sway, M. Kinetics of abstraction reactions of methyl radicals with alkanes in gas phase ---- Indian J. Chem. vol29. p.748. 1990. (399 - 434 K) 0.67 Bar. (incertidumbre 1.26) ---- C4H10 +CH3 =S-C4H9 +CH4 6.872E+11 0.0 39.99 C4H10 +CH3 =S-C4H9 +CH4 1.444E+12 0.0 39.99 ---- ---- Yampol'skii, Yu.P.; Nametkin, N.S. Rate Constants of Reactions of CH3, C2H5, and Atomic Hydrogen with Butane at High ---- Temperatures. Kinet. Catal. vol. 17 pag.57. 1976. kcin=(3.162E+12/0.0/46.47) ---- C4H10 +CH3 =PRODUCTOS +CH4 3.162E+12 0.0 46.47 ---- ---- From: M. Cathonnet...C3_C4.18 Sympo. Ref: Sundaram,K.M and Froment,G.F.: I. and E.C. Fundamentals 17,174 (1978) C4H10 +C2H3 =P-C4H9 +C2H4 1.000E+12 0.0 75.24 C4H10 +C2H3 =S-C4H9 +C2H4 8.000E+11 0.0 70.22 ---- ---- ---- Smpol'skii, Yu.P.; Nametkin, N.Rate Constants of Reactions of CH3, C2H5, and Atomic Hydrogen with Butane at High ---- Temperatures. Kinet. Catal. vol 17.p.57. 1976. (980-1060K) (0.07Bar) Experimental Incertidumbre=5.0 ---- k_total=1.581E+13. Si distribuye en proporcion 2:1 entre P y S ---- k_total=3.162E+12.!!!!!! Esta es la original, al multiplicarla por 5 da el valor de 1.581E+13 !!! C4H10 +C2H5 =P-C4H9 +C2H6 1.054E+13 0.0 53.54 C4H10 +C2H5 =S-C4H9 +C2H6 5.270E+12 0.0 48.54 ---- ---- From: M. Cathonnet...C3_C4.18 Sympo. Ref: Sundaram,K.M and Froment,G.F.: I. and E.C. Fundamentals 17,174 (1978) C4H10 +C3H5 =P-C4H9 +C3H6 4.000E+11 0.0 78.58 C4H10 +C3H5 =S-C4H9 +C3H6 8.000E+11 0.0 70.22 ---- ---- Modeling of Aromatic and Policyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames. ---- N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi and S.M. Senkan. ---- Combustion Sci And Tech. 1996, Vol 116-117, pp.211-287 ---- kcin_P=(7.940E+11/0.0/85.69) ---- kcin_S=(3.160E+11/0.0/68.55) ---- C4H10 +C3H5 =P-C4H9 +C3H6 7.940E+11 0.0 85.69 ---- C4H10 +C3H5 =S-C4H9 +C3H6 3.160E+11 0.0 68.55 ------ ****************************************** **** C formation reactions *********** ****************************************** ---- R.L. THORNE, M. C. BRANCH, D. W. CHANDLER, R. J. KEE, J. A. MILLER, ---- SYMP. (INT) COMB., 21, 963, I(86) CH +H =C +H2 1.500E+14 0.00 0.0 C +O2 =CO +O 5.000E+13 0.00 0.0 ---- ************************************************************************ ****************************************** **** * **** I S O - M E C H A N I S M * **** * ****************************************** **** ****************************************** **** i-40. i-C4H7 Reactions ****************************************** ---- Chevalier1993 I-C4H7 =C3H4 +CH3 1.000E+13 0.0 213.6 ****************************************** **** i-41. i-C4H8 Reactions ****************************************** ---- Decomposition I-C4H8 =C3H5 +CH3 5.000E+18 -1.0 307.4 ---- Original= (1.000E+17/0.0/368.5) ---- Douhou, S.; Perrin, D.; Martin, R Etude cinetique et modelisaiton de la reaction thermique de l'isobutene vers 800 K. ---- I. Isobutene pur. J. Chim. Phys. vol.91. p.1597-1627 1994. ---- (763-813K);(0.01-0.13Bar) kcin=(2.00%+15/0.0/3.65.83) Experimental I-C4H8 =I-C4H7 +H 2.000E+15 0.0 365.8 ---- Reaction with H I-C4H8 +H =I-C4H7 +H2 1.000E+13 0.0 15.9 ---- Tsang, W.; Walker, J.A. Mechanism and rate constants for the reactions of hydrogen atoms with isobutene at high ---- temperatures. Symp. Int. Combust. Proc. vol.22. p.1015 1989. ---- (1000-1180K) (2.53-3.04Bar) kcin=(1.72257E+13/0.0/15.049) I-C4H8 +H =C3H6 +CH3 1.722E+13 0.0 15.0 ---- Reaction with O I-C4H8 +O =I-C4H7 +OH 2.500E+05 2.6 -4.7 I-C4H8 +O =I-C3H7 +CHO 7.230E+05 2.3 -4.4 ---- Reaction with OH I-C4H8 +OH =I-C4H7 +H2O 9.600E+12 0.0 5.2 I-C4H8 +OH =I-C3H7 +CH2O 1.500E+12 0.0 0.0 ---- Reaction with CH3 ---- T.J. Mitchell und S.W. Benson, Int.J.Chem.Kinet., 1993,25,931-955 I-C4H8 +CH3 =I-C4H7 +CH4 6.030E+11 0.0 37.23 ****************************************** **** i-42a. i-C4H9 Reactions ****************************************** ---- Decomposition ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) ---- kcin=(2.000E+13/0.0/125.34) ---- Knyazev, V.D.; Slagle, I.R.. Unimolecular decomposition of n-C4H9 and iso-C4H9 radicals ---- J. Phys. Chem. vol 100 p.5318 - 5328, 1996. kcin=(2.141E+12/0.65/128.87) ---- (298-900K) (0-10.13Bar) I-C4H9 =C3H6 +CH3 2.141E+12 0.65 128.90 ---- M. Weissman and S. Benson, Int. J. Chem. Kinet., 1984,16,307 ---- CEC94, k_inf= 8.300E+13 0.0 159.63 I-C4H9 =I-C4H8 +H 1.000E+14 0.0 151.88 ---- Reaction with O2 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H9 +O2 =I-C4H8 +HO2 2.410E+10 0.0 0.0 ---- Reaction with CH3 ---- incertidumbre 2.0 Tsang I-C4H9 +CH3 =I-C4H8 +CH4 6.040E+12 -0.32 0.0 ---- Reaction with C3H8 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H9 +C3H8 =I-C4H10 +N-C3H7 0.903E+00 3.65 38.240 I-C4H9 +C3H8 =I-C4H10 +I-C3H7 1.506E+00 3.46 31.179 ****************************************** **** i-42b. t-C4H9 Reactions ****************************************** ---- Decomposition ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990), ---- und CEC94, S.1026, +-0.5, 300-800K T-C4H9 =H +I-C4H8 8.300E+13 0.0 159.63 ---- Warnatz, Combustion Chemistry (ed. W.C. Gardiner), Springer-Verlag, ----- NY 1984,Chapter 5, pp.197 T-C4H9 =C3H6 +CH3 1.000E+16 0.0 193.00 ---- Reaction with O2 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) T-C4H9 +O2 =I-C4H8 +HO2 4.820E+11 0.0 0.00 ---- ---- Reaction with CH3 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) T-C4H9 +CH3 =I-C4H8 +CH4 1.258E+13 0.0 2.494 ---- disproposition ---- CEC94, p.1026, +-0.15 at 300K rising to +-0.3 at 1000K T-C4H9 +T-C4H9 =I-C4H10 +I-C4H8 7.226E+16 -1.73 0.00 ****************************************** **** i-43. i-C4H10 Reactions ****************************************** --------------------------------------- ----- Decomposition of i-C4H10 --------------------------------------- ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) ---- kcin=(1.100E+26/-2.61/377.985) Error numerico ---- Hidaka, Y.; Fujiwara, M.; Oki, T.; Kawano, H. ---- Thermal decomposition of isobutane in shock waves. Rate constant of initiation reaction ---- Chem. Phys. Lett. Vol 144, p.570 1988 ---- (1000-1560K) (1.32-2.93Bar) I-C4H10 =CH3 +I-C3H7 4.500E+16 0.0 339.23 ---- Chevalier 1993, Diss I-C4H10 =T-C4H9 +H 1.000E+15 0.0 390.7 ---- Chevalier 1993, Diss I-C4H10 =I-C4H9 +H 1.000E+15 0.0 410.4 --------------------------------------- ----- H-atom abstraction of i-C4H10 --------------------------------------- ---- Reaction with H ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +H =T-C4H9 +H2 6.020E+05 2.4 10.810 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +H =I-C4H9 +H2 1.810E+06 2.54 28.270 ---- Reaction with O ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +O =T-C4H9 +OH 1.560E+05 2.5 4.660 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +O =I-C4H9 +OH 4.280E+05 2.5 15.250 ---- Reaction with OH ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +OH =T-C4H9 +H2O 5.730E+10 0.51 0.27 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +OH =I-C4H9 +H2O 2.290E+08 1.53 3.24 ---- Reaction with HO2 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +HO2 =I-C4H9 +H2O2 3.010E+04 2.55 64.850 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +HO2 =T-C4H9 +H2O2 3.610E+03 2.55 44.070 ---- Reaction with CH3 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +CH3 =T-C4H9 +CH4 0.904E+00 3.46 19.24 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +CH3 =I-C4H9 +CH4 1.360E+00 3.65 29.900 ---- Reaction with O2 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +O2 =I-C4H9 +HO2 4.040E+13 0.0 213.100 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +O2 =T-C4H9 +HO2 3.970E+13 0.0 184.080 ---- Reaction with CH3O2 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +CH3O2 =I-C4H9 +CH3O2H 3.010E+04 2.55 64.850 ---- W. Tsang, J.Phys. Chem Ref. Data. 19, 1-68, (1990) I-C4H10 +CH3O2 =T-C4H9 +CH3O2H 3.610E+03 2.55 44.070 ---- RAUL: NIST, Tsang, 1990. Incer=2.50. I-C4H10 +C2H5 =I-C4H9 +C2H6 1.385E+00 3.65 38.247 ---- RAUL: NIST, ZTsang, 1990, incer=2.50 I-C4H10 +C2H5 =T-C4H9 +C2H6 0.541E+00 3.46 24.943 ---- ---- ---- ---- ---- ---- -------- -------- ************************************************************************ **** **** PART TWO: REACTIONS LOW TEMPERATURE **** ************************************************************************ -------- -------- ---- ---- ---- ---- ---- ---- ************************************************************************ **** 1. CH3CO REACTIONS ************************************************************************ ---- 17b ---- Ya incluidas en la primera parte ---- RAUL: NIST, 2000 ---- Tsang, 1986: kcin=(6.023E+13/0/0) ---- Hassinen, E.; Koskikallio, J.,:kcin=(2.3188E+13/0/0) ---- Yee Quee, M.J.; Thynne, J.C.J.:kcin=(1.8189E+13/0/0) ----CH3O +CH3O >CH2O +CH3OH 1.000E+12 0.0 0.0 ----CH2O +CH3OH >CH3O +CH3O 2.88E+10 0.452 347.0 ---- RAUL: NIST, 2000 ---- Tsang.1986 CH3O +CH3 =CH2O +CH4 2.409E+12 0.0 0.0 ---- NIST, 2000, Tsang.1986 ---- Uncrertainty=5.0 CH3O +HO2 =CH2O +H2O2 3.011E+11 0.0 0.0 ---- NIST, 2000 Tsang, 1986 ---- Uncertainty=5.0 CH3O +C2H5 =CH2O +C2H6 2.409E+13 0.0 0.0 ---- NIST, 2000, Tsang, 1986 ---- Uncertainty=5.0 CH3O +C2H3 =CH2O +C2H4 2.409E+13 0.0 0.0 ************************************************************************ **** 2. CH3CO REACTIONS ************************************************************************ ----15b ---- CH3CO +O2 >CH3CO3 1.000E+12 0.0 0.0 ---- CH3CO3 >CH3CO +O2 1.020E+07 2.55 172.0 ---- koriginal=(1.000E+12 0.0 0.0) ---- NIST 2000, Sehested, J.; Christensen, L.K.; Nielsen, O.J.; Wallington, T.J. ---- Absolute rate constants for F + CH3CHO and CH3CO + O2, ---- relative rate study of CH3CO + NO, and the product distribution of the F + CH3CHO reaction ---- Int. J. Chem. Kinet. vol.30 , p.913-921. 1998. Experimental, 295K. 1 Bar CH3CO +O2 =CH3CO3 2.650E+12 0.0 0.0 ---- NIST, 2000, CEC, 1994 ---- Uncertainty=1.58 CH3CO +O =CO2 +CH3 4.818E+23 0.0 0.0 ---- NIST, 2000, Tsang, 1986 ---- Uncertainty=3.00 CH3CO +OH =CH2CO +H2O 1.210E+13 0.0 0.0 ---- NIST, 2000: Adachi, H., Basco, N., and James, D. G. L. ---- The Acetyl Radicals CH3CO and CD3CO Studied by Flash Photolysis and Kinetic Spectroscopy ---- Int. J. Chem. Kinet. 1981, v.13, p.1251. CH3CO +CH3 =C2H6 +CO 3.300E+13 0.0 0.0 ---- NIST 2000: Hassinen,E., Kalliorinne,K., Koskikallio,J. ---- Kinetics of reactions between methyl and acetyl radicals in ---- gas phase produced by flash photolysis of acetic anhydride. ---- Int. J. Chem. Kinet., 1990, v. 22, p. 741 I CH3CO +CH3 =CH4 +CH2CO 6.100E+12 0.0 0.0 ************************************************************************ **** 3. CH3CHO REACTIONS ************************************************************************ ---- 14b CH3CHO +CH3O2 >CH3CO +CH3O2H 1.000E+12 0.0 42.0 CH3CO +CH3O2H >CH3CHO +CH3O2 5.030E-01 3.42 30.4 ---- NIST, 2000: Hohlein, G.; Freeman, G.R. ---- Radiation-sensitized pyrolysis of diethyl ether. Free-radical reaction rate parameters ---- VOL.92. 6118, 1970 (357-676K, 0.05-2.8 Bar) CH3CHO +C2H5 =CH3CO +C2H6 1.258E+12 0.0 35.586 ---- RAUL: Scherzer, K.; Loser, U.; Stiller, W. ---- Revizar: BSBL-Rechnungen zu wasserstoffabspaltungsreaktionen durch alkenylradikale; ---- Vinylradikale. Z. Chem. vol. 27. p.300. 1987. kcin=(8.131E10/0.0/15.382) CH3CHO +C2H3 =CH3CO +C2H4 8.131E+10 0.0 15.382 ************************************************************************ **** 4. CH3CO3 REACTIONS ************************************************************************ ---- 27b ---- korigi_for=(4.640E+10 0.0 -10.8), kcin_back=(2.290E+11-0.0901 151.0) ---- NIST 2000: Crawford, M.A.; Wallington, T.J.; Szente, J.J.; Maricq, M.M.; Francisco, J.S. ---- Kinetics and mechanism of the acetylperoxy + HO2 reaction ---- J. Phys. Chem. A. vol.103. p.365-378, 1999. CH3CO3 +HO2 =CH3CO3H +O2 2.111E+11 0.0 -11.22 ---- ---- 22b ---- NIST: Dixon, D.J.; Skirrow, G.; Tipper, F.H. ---- Low Temperature Gas-phase Oxidation of Aldehydes. Part 2. Retardation above 120oC ---- J. Chem. Soc. Faraday Trans. 1. vol.70. p.1090. 1974. ---- kcin=(2.4 veces Ray, D.J.M.) ---- kcin=(7.198E+09/0/0) ---- 22.b CH3CO3 +CH2O =CH3CO3H +CHO 7.198E+09 0.0 0.0 ---- CH3CO3 +CH2O >CH3CO3H +CHO 1.000E+12 0.0 42.0 ---- CH3CO3H +CHO >CH3CO3 +CH2O 2.420E+07 1.01 25.4 ---- 70 CH3CO3 +CH3 >CO2 +CH3 +CH3O 3.610E+13 0.0 0.0 ---- ---- NIST: Ray, D.J.M.; Waddington, D.J. ---- Epoxidation of Alkenes in the Gas Phase ---- J. Phys. Chem.. vol. 76. 3319. 1972. 457K. 0.13 Bar. ---- kcin=(2.999E+09/0/0) ---- 14b CH3CO3 +CH3CHO =CH3CO3H +CH3CO 2.999E+09 0.0 0.0 ---- CH3CO3 +CH3CHO >CH3CO3H +CH3CO 1.890E+12 0.0 30.1 ---- CH3CO3H +CH3CO >CH3CO3 +CH3CHO 1.960E+07 1.21 30.2 ---- 22b CH3CO3 +C2H5CHO >CH3CO3H +C2H5CO 1.000E+12 0.0 42.0 CH3CO3H +C2H5CO >CH3CO3 +C2H5CHO 1.270E+10 0.266 47.1 ************************************************************************ **** 5. CH3CO3 REACTIONS ************************************************************************ ---- 15 CH3CO3H =CO2 +CH3 +OH 3.980E+15 0.0 167.0 ---- ---- NIST 2000: Sahetchian, K.A.; Rigny, R.; Tardieu de Maleissye, J.; Batt, L.; ---- Anwar Khan, M.; Mathews, S. The pyrolysis of organic hydroperoxides (ROOH). ---- Symp. Int. Combust. Proc. vol.24. p.637-643. 1992. Exp.(533-720 K.0.3-2.3Bar). ---- Uncertainty=2.51. CH3C=0 (O -> Grupo C=O). Problema: Que haceer con CH3CO2? ---- Base 3 la incluyo CH3CO3H =CH3CO2 +OH 3.017E+10 0.0 167.9 ---- ---- Revision bibliografica: R.D Wilk 1986!!! ---- CH3CO2 -> CH3 +CO2 (Problema: Valores de la Cinetica???) ---- Base 3 la incluyo CH3CO2 +M(1) =CO2 +CH3 +M(1) 8.700E+15 0.0 60.192 ---- Este paso es dominante a baja temperatura. A alta temp. la descomposicion directa es la favorecida: ---- CH3CO + M -> CH3 + CO + M (Reaccion ya incluida!!!!) ---- ************************************************************************ **** 6. C2H4 REACTIONS ************************************************************************ ---- ---- C2H4O = OXIRAN !!!!! ---- ----O--- ---- | | -> C2H4O (Oxyran) ---- CH2---CH2 ---- ---- ----O--- ---- | | -> C2H3O (Oxyranil) ---- CH2---CH* ---- ---- CEC 94. ---- 600-900K +/- 0.15 at 600K 0.25 900K. Uncertainty=1.78 ---- C2H4O = OXIRAN !!!!! ---- kcin=(2.228E+12/0.0/71.9) ---- C2H4 +HO2 =OXIRAN +OH 2.228E+12 0.0 71.9 ---- ---- 2003 ---- kcin=(3.793E+12/0.0/74.74) ---- 2.093E+12 (+,-) 0,15 (1.41) 600-700K ---- (+,-) 0,25 (1.78) 900K C2H4 +HO2 =OXIRAN +OH 2.793E+12 0.0 74.74 ---- ---- ---- ********** ---- RQ 11-11-2004 ---- Inicio C2H4OOH Mechanism ---- ---- Nota from:Wilk, Westbrook, Pitz and Cernansky. 23 Symp. p.203-210. ---- C2H4 + HO2 -> C2H4OOH Ea = 33.44 kJ/mol ---- C2H4OOH -> C2H4 + HO2 Ea = 83.60 kJ/mol kcin=(2.000E13/0.0/98.23) Ranzi94 Nancy ---- ---- kcin=(2.860E+11/0.0/91.91) ---- C2H4OOH =C2H5O2 kcin=(2.860E+11/0.0/91.96) ---- C2H4OOH -> OXIRAN + OH kcin=(1.500E+11/0.0/83.60) Ranzi94 Nancy ---- ---- Nancy: CHEMKIN format Ea in KCAL/mol !!!! ---- C2H5OO=R16C2H4O2H 4.2E12 0. 36.9E3 ! HUGHES93 !154.24 ---- C2H4O2H=C2H4O +OH 1.5E11 0. 20.0E3 !(383,-383)! 83.60 ---- C2H4O2H=CH2OH +HCHO 2.5E13 0. 27.5E3 !(384,-384)!114.95 ---- C2H4O2H=C2H4 +O2H 2.0E13 0. 23.5E3 !(385,-385)! 98.23 ---- ---- R15 Homolitic O-O Bound Scission For Radicals ---- kcin=(1.000E+09/0.0/31.4) ---- kcin=(1.500E+11/0.0/83.60) Ranzi94 Nancy ---- C2H4OOH =OXIRAN +OH 1.000E+09 0.0 31.40 ---- C2H4OOH =OXIRAN +OH 1.500E+11 0.0 83.60 ---- ---- Trabajo con el mecanismo de Wilk y los valores de Nancy, y adiciono CH2O formacion: ---- ---- C2H4OOH =C2H5O2 2.860E+11 0.0 91.96 ---- 2C2OOH1 =C2H5O2 2.860E+11 0.0 91.96 ---- ---- C2H4OOH =HO2 +C2H4 2.000E+13 0.0 98.23 ---- ----****HO2 +C2H4 =C2H4OOH 2.000E+15 0.0 33.44 HO2 +C2H4 =2C2OOH1 1.000E+11 0.0 71.44 ----****C2H4OOH =OXIRAN +OH 1.500E+11 0.0 83.60 ---- 2C2OOH1 =OXIRAN +OH 1.500E+11 0.0 83.60 ---- ----****C2H4OOH =CH2OH +CH2O 2.000E+13 0.0 114.95 2C2OOH1 =CH2OH +CH2O 2.000E+13 0.0 114.95 ---- ---- End C2H4OOH Mechanism !!! ---- *************** ---- ---- Konnov Estimated ---- k = 1.000E+12 exp(- 25000.0 cal/mol /RT) cm3/mol s C2H4 +C2H5O2 =C2H5OOH +C2H3 1.000E+12 0.0 104.50 ---- ---- NIST 2000. Oxirane System. ---- Bogan, D.J.; Hand, C.W. Absolute Rate Constant, Kinetic Isotope Effect, ---- and Mechanism of the Reaction of Ethylene Oxide with Oxygen(3P) Atoms ---- J. Phys. Chem. vol.82. p.2067. 1978. Exp. 298-691K. Uncertainty=1.2. OXIRAN +O =C2H3O +OH 1.909E+12 0.0 21.9 ---- ---- Konnov Estimated ---- kcin=(1.000E+11/0.0/58.6) OXIRAN +CH2CHO =CH3CHO +C2H3O 1.000E+11 0.0 58.6 ---- ---- Baldwin, R.R.; Keen, A.; Walker, R.W. ---- Studies of the decomposition of oxirane and of its addition to slowly reacting ---- mixtures of hydrogen and oxygen. J. Chem. Soc. Faraday Trans.1. vol.80. p.435.1984 ---- Experimental. 297-753K. 0.08-0.67 Bar OXIRAN +H =C2H3O +H2 8.010E+13 0.0 40.5 ---- ---- NIST Lifshitz, A.; Ben-Hamou, H. ---- Thermal reactions of cyclic ethers at high temperatures. 1. ---- Pyrolysis of ethylene oxide behind reflected shocks. J. Phys. Chem ---- vol.87. p.1782. 1983. OXIRAN +H =C2H4 +OH 9.516E+10 0.0 20.9 OXIRAN +H =C2H3 +H2O 4.999E+09 0.0 20.9 ---- ---- NIST. Baldwin 1984. ---- kcin=(1.782E+13/0.0/15.130) (+,-) 1.962 kJ ---- OXIRAN +OH =H2O +C2H3O 1.782E+13 0.0 16.130 ---- ---- NIST. Lorenz, K.; Zellner, R. Rate constants and vinoxy product yield in the reaction OH + Ethylene Oxide ---- Ber. Bunsenges. Phys. Chem. vol.88 p1228 1984. (298 - 435 K)(0.01-0.08Bar) ---- kcin=(1.110E-11/0.0/12.139) (±3.99x10-12 cm3/molecule s)( ±1214 J/mole)/RT ---- kcin=(6.625E+12/0.0/12.139) (±2.4031*E+12cm3/mol s) ---- kcinmax=4.222 ---- kcinmin=9.028 OXIRAN +OH =H2O +C2H3O 4.625E+12 0.0 13.239 ---- ---- NIST. Baldwin 1984. ---- Uncertainty=1.41 OXIRAN +CH3 =CH4 +C2H3O 1.072E+12 0.0 49.47 ---- ---- korig=(1.072E+12/0.0/49.47) Lifshitz, A.; Ben-Hamou, H. ---- Decomposition, NIST 2000: Yang, H.X.; Chen, H.; Han, D.G ---- The rate constant determination for the isomerization of ---- ethylene oxide to acetaldehyde by chemical shock tube ---- Acta Chim. Sin.(Engl.Ed.).vol.47. p.941. 1989.(1060-1170K) OXIRAN =CH3CHO 6.310E+13 0.0 247.71 ---- ---- Baldwin, R.R.; Keen, A.; Walker, R.W. ---- Studies of the decomposition of oxirane and of its addition to slowly reacting mixtures of hydrogen ---- and oxygen at 480 C. J. Chem. Soc. Faraday Trans. 1:vol.80, p 435, 1984. ---- (830-1200K;1.52-10.13Bar) Experimental. 5.25x10-4 (s-1) ---- OXIRAN =CH3 +CHO 5.250E-04 0.0 0.00 ---- OXIRAN =CH4 +CO 5.000E-04 0.0 0.00 ---- ---- Lifshitz, A.; Ben-Hamou, H. Thermal reactions of cyclic ethers at high temperatures. ---- 1. Pyrolysis of ethylene oxide behind reflected shocks. J. Phys. Chem. vol 87 p.1782, 1983. ---- (830-1200K) (1.52,10.13Bar). OXIRAN =CH4 +CO 1.210E+13 0.0 239.46 OXIRAN =CH3 +CHO 3.630E+13 0.0 239.46 ---- ---- konnov. ---- Konnov, A.A. High-temperature pyrolysis and oxidation of oxygen-containing ethane derivatives. ---- Ph.D. Thesis, Institute of Chemical Physics, USSR Academy of Sciences, 1985. ---- kcin=(1.000E+14/0.0/217.14) ---- NOTA: NO incluir la segunda !!!! OXIRAN +O2 =HO2 +C2H3O 1.000E+14 0.0 217.14 ---- OXIRAN +HO2 =H2O2 +C2H3O 5.000E+13 0.0 75.50 ---- ---- konnov. ---- Borisov, A.A., Zamanskii, V.M., Konnov, A.A., Lissyanskii, V.V., and Skachkov, G.I. ---- Pyrolysis and ignition of ethylene oxide. Sov. J. Chem. Phys., 1990, v.6, pp.2181-2195. ---- kcin=(4.000E+15/0.0/0.0) C2H3O +H +M(1) =OXIRAN +M(1) 4.000E+15 0.0 0.00 ---- ---- Chen, J.; Young, V.; Hooshiyar, P.A.; Niki, H.; Hurley, M.D ---- FTIR spectroscopic study of the Cl-atom-initiated reactions of ethylene oxide in O2/N2 diluent ---- J. Phys. Chem. vol.99. p.4071 - 4077. 1995. (297K)(0.93Bar) kcin=(2.000E+04/0/0) ---- ---- NOTA: Konnov usa para la decomposicion: (8.000E+11/0.0/41.80), de acuerdo con NIST(*) esta reaccion ---- es 8.55 veces menos que la decomposicion a CH3CO, luego se divide Konnov(o Wilk) entre 8 y es el valor que se utiliza!! ---- Wilk case: 8.500E+14/8.55 = 1.000E+14 kcin=(1.000E+14/0.0/58.52) ---- (*) = Baldwin, R.R.; Keen... et al. ---- kcin=( C2H3O =CH2CHO 1.000E+14 0.0 58.52 ---- ---- Baldwin, R.R.; Keen, A.; Walker, R.W. Studies of the decomposition of oxirane and of its addition ---- to slowly reacting mixtures of hydrogen and oxygen at 480 C. J. Chem. Soc. Faraday Trans.1: vol 80, p.435 1984 ---- (753 K)(0.08-0.67 Bar) ---- kcin= (8.55 [+,- 3.2] veces "C2H3O=CH2CHO") ---- 8.500E+14; 58.52 = C2H3O =CH3CO C2H3O =CH3CO 8.500E+14 0.0 58.52 ---- ---- Konnov. ---- kcin=(8.000E+11/0.0/41.80) ---- C2H3O =CH3 +CO 8.000E+11 0.0 41.80 ---- ---- Wilk, Richard; Pitz W.; Westbrook C.; Nicholas P. Cernansky. Chemical kinetics modeling of ethene oxidation ---- at low and intermedia temperatures. 23th. p 203-210. 1990. ---- kcin=(8.500E+14/0.0/58.52) ---- C2H3O =CH3CO 8.500E+14 0.0 58.52 ---- ---- ---- RQ 11-11-2004 ---- Waddington Mechanism: Ref:Tully,F.P.: Chem. Phys. Lett. 143, 5 (1988) ---- C2H4 +OH =C2H4OH 1.630E+12 0.0 -2.884 ---- C2H4OH +O2 =O22OH 1.630E+12 0.0 -2.884 ---- O22OH =CH2O +CH2O +OH 1.630E+12 0.0 0.00 ---- ---- H H @ ---- | | | ---- @--C--C--OH -> C2H4OH (Isomero= CH3-CH-OH) ---- | | ---- H H ---- ---- Ya definidos: ---- CH2CH2OH = C2H4OH ---- CH3CHOH = Isomero de CH2CH2OH, ver numeral 30D ---- ---- Atkinson,R., Baulch,D.L., Cox,R.A., Hampson,R.F.,Jr., Kerr,J.A., Troe,J. ---- Evaluated kinetic and photochemical data for atmospheric chemistry. Supplement IV. ---- IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. ---- WEB version December 2000. OH +C2H4 +M(1) =CH2CH2OH+M(1) 5.420E+12 0.00 0.0 LOW 1.190E+27 -3.10 0.0 TROE 0.480 000.0 0000 000.0 ---- ---- From Konnov: ---- Borisov, A.A., et al. 1991. CH2CH2OH=CH3CHOH 1.000E+11 0.00 112.86 ---- ---- Ref 32, nota 5 ---- kcin=(1.000E+09/0.0/72) CH2CH2OH=CH3 +CH2O 1.000E+09 0.00 72.0 ---- ---- From Konnov. ---- Anastasi,C., Simpson,V., Munk,J., Pagsberg,P. UV spectrum and the kinetics and reaction pathways of ---- the self-reaction of CH2CH2OH radicals. J. Phys. Chem. 94: 6327 (1990) ---- Konnov incluye la isomerizacion de C2H4OH (cambio de la posicion radical) y cada uno de los isomeros ---- contribuye a la formacion de ethanol en igual medida. ---- kcin=(5.00E+13 cm3/mol s) CH2CH2OH+C2H5O =C2H5OH +CH3CHO 5.000E+13 0.00 0.0 CH3CHOH +C2H5O =C2H5OH +CH3CHO 5.000E+13 0.00 0.0 ---- ---- ---- Oxygen Adition (Tomado de C3 subsystem) ---- kcin=(1.000E12/0.0/0) ---- Ref 3, nota 4 kcin_fwrd=(5.000E+11/ 0.0/-4.6) ---- Ref 32, nota 5 kcin_back=(3.240E+17/-1.0/125.527) CH2CH2OH+O2 =OOC2OH 1.000E+12 0.00 0.0 ---- ---- Decomposition (Tomado de C3H5O2 Reactions) ---- R-12 ßeta Scission for R-O@ - ---- Uncertainty = 3.16 kcin=(6.310E+13/0.00/81.56) ---- Ref 32, 5 kcin=(1.000E+16/0.0/104.6) OOC2OH =CH2O +CH2O +OH 1.000E+16 0.00 50.60 ---- ---- ************************************************************************ **** 7. C2H5 REACTIONS ************************************************************************ ---- ---- R7 ADDITION OF MOLECULAR OXYGEN - ---- 28b ---- C2H5 +O2 >C2H5O2 2.600E+12 0.0 0.0 ---- INVERSE: R7 ADDITION OF MOLECULAR OXYGEN - ---- C2H5O2 >C2H5 +O2 4.300E+03 3.76 120.0 ---- ---- Wagner, A.F.; Slagle, I.R.; Sarzynski, D.; Gutman, D. Experimental and theoretical studies ---- of the C2H5 + O2 reaction kinetics Journal: J. Phys. Chem. vol94 p.1853 1990 ---- (300-1000K) (0.01-10.13Bar) (1.4xE+02/(T/298 K)^(-9.85)/162964) ---- ---- Kback: ---- kcin_o =(1.981E+50/-9.85/162.964) [1.400E+02/(T/298)^(-9.85)/162.964] [cm3/molecule_s/(J/mole)] ---- kcin_inf =(6.347E+17/-0.84/143.009) [5.300E+15/(T/298)^(-0.84)/143.009] [(s-1)_(J/mole)] ---- C2H5O2 >C2H5 +O2 6.347E+17 -0.84 143.09 ---- LOW 3.289E+26 -9.85 162.96 ---- TROE 0.000 0000.0 00.0 0.0 ---- ---- Kfwd: ---- kcin_o =(7.101E+42/-8.24/17.87) [8.020x10-26/(T/298 K)^-8.24/17876 [cm6/molecule2_s/(J/mole)/RT] ---- kcin_inf =(2.240E+10/0.77/2.386) [2.990x10-12/(T/298 K)^0.770/2386] [cm3/molecule_s/(J/mole)/RT] ---- C2H5 +O2 >C2H5O2 2.240E+10 0.77 2.386 ---- ---- C2H5 +O2 +M(1) =C2H5O2 +M(1) 2.240E+10 0.77 2.386 ---- LOW 7.101E+42 -8.24 17.87 ---- TROE 0.000 0000.0 00.0 0.0 ---- ---- Bozzelli, J.W.; Dean, A.M. Chemical activation analysis of the reaction of C2H5 with O2 ---- J. Phys. Chem. vol.94. p.3313. 1990. (250-1200K)(0 - 1.01Bar) ---- kcin=(2.002E+42/-10.30/25.442) [ 1.09x10-7 (cm3/molecule s) / (T/298 K)^(-10.30) / 25442 ] (J/mole)/RT C2H5 +O2 =C2H5O2 2.002E+42-10.3 25.442 ---- ---- Robert S. Tranter, Raghu Sivaramakrishnan, Kenneth Brezinsky Mark Allendorf. ---- Hifh pressure, high temperature shock tubes studies of ethane pyrolysis and oxidation. ---- PCCP. 2002, vol4, 2001-2010. Experimental!! ---- ---- C2H5 +O2 +M(1) =C2H5O2 +M(1) 2.020E+10 0.98 -0.265 ---- LOW 8.490E+29 -4.29 0.919 ---- TROE 0.103 601.0 00.0 0.0 ----- ************************************************************************ **** 8. C2H5O REACTIONS ************************************************************************ ---- ************************************************************************ **** 9. C2H5O2 REACTIONS ************************************************************************ ---- - R8 INTERNAL H ABSTRACTION - ---- 21b C2H5O2 >2C2OOH1 2.080E+12 0.0 138.0 ---- - INVERSE: R8 INTERNAL H ABSTRACTION - 2C2OOH1 >C2H5O2 8.500E+09-0.0988 69.5 ---- ---- - C1 FORMATION OF O-HETEROCYKLEN - 2C2OOH1 =OXIRAN +OH 1.300E+10 0.0 65.5 ---- ---- RANZI 1994 (EA=ORIGINAL/1000) ---- No encuentro la referencia ---- C2H5O2 +CO >C2H5O +CO2 1.000E+14 0.0 24.0 ---- ---- ---- Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T., ---- Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J. Summary table of evaluated kinetic data ---- for combustion modeling: Supplement 1. Combust. Flame, 1994, v.98, pp.59-79. ---- k = 2.000E+13 exp(- 4750.0 cal/mol /RT) cm3/mol s [1] C2H5OOH +O =OH +C2H5O2 2.000E+13 0.0 19.85 ---- ---- ---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - ---- Koriginal=(4.640E+10/0.0/-10.8) from 27b ---- C2H5O2 +HO2 >C2H5OOH +O2 4.640E+10 0.0 -10.800 ---- C2H5OOH +O2 >C2H5O2 +HO2 2.050E+10-0.0893 126.0 ---- ---- NIST 2000. Atkinson, R.; Baulch, D. 1997 (Bibliografia) ---- C2H5O2 +HO2 >C2H5OOH +O2 1.632E+11 0.0 -8.314 ---- ---- Fenter, F.F.; Catoire, V.; Lesclaux, R.; Lightfoot, P.D ---- The ethylperoxy radical: its ultraviolet spectrum, self-reaction, and reaction with HO2, ---- each studied as a function of temperature. ---- J. Phys. Chem., vol.97, p.3530 - 3538, 1993 (Experimental, 1.01Bar, 248-480K) ---- kcin=(9.697E+10/0.0/-10.476) C2H5O2 +HO2 =C2H5OOH +O2 9.697E+10 0.0 -10.476 ---- ---- NIST 2000. Atkinson, R.; Baulch, D. 1997 (Bibliografia) ---- C2H5O2 +HO2 =C2H5OOH +O2 1.632E+11 0.0 -8.314 ---- ---- Wilk, R.D., Cernansky, N.P., Pitz, W.J., and Westbrook, C.K. ---- Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study. ---- Combust. Flame, 1989, v. 77, pp. 145-170 ---- kcin=(1.150E+11/0/41.8) ---- 22b C2H5O2 +CH3CHO >C2H5OOH +CH3CO 1.000E+12 0.0 42.0 C2H5O2 +CH2O >C2H5OOH +CHO 1.000E+12 0.0 42.0 C2H5O2 +C2H5CHO >C2H5OOH +C2H5CO 1.000E+12 0.0 42.0 ---- ---- - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - C2H5OOH +CHO >C2H5O2 +CH2O 2.170E+06 1.01 0.688 C2H5OOH +CH3CO >C2H5O2 +CH3CHO 9.260E+05 1.22 17.3 C2H5OOH +C2H5CO >C2H5O2 +C2H5CHO 1.140E+09 0.267 22.3 ---- ---- ---- Koriginal_MN_F=(0.165E+12/0.0/0.00) ---- koriginal_MN_B=(1.000E+04/0.0/0.00) ---- NIST 2000: Villenave, E.; Lesclaux, R. ---- Kinetics of the cross reactions of CH3O2 and C2H5O2 radicals with ---- selected peroxy radicals. J. Phys. Chem, vol 100. p. 14372-14382. 1996. ---- Experimental 298K, 1.01 Bar. C2H5O2 +CH3O2 =C2H5O +CH3O +O2 1.211E+11 0.0 0.00 ---- ---- koriginial_forw=(0.130E+12/0.0/0.0); kori_back=(0.100E+07/0.0/0.0) ---- NIST 2000: Bauer, D.; Crowley, J.N.; Moortgat, G.K. ---- The UV absorption spectrum of the ethylperoxy radical and ---- its self-reaction kinetics between 218 and 333 K;J. Photochem. Photobiol. A: ---- vol. 65. p.329-344, 1992. Experimental (298K, 0.08-0,2Bar) C2H5O2 +C2H5O2 >C2H5O +C2H5O +O2 2.650E+10 0.0 0.00 C2H5O +C2H5O +O2 >C2H5O2 +C2H5O2 0.100E+07 0.0 0.00 ---- ---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - ---- 25b C2H5O2 +C4H10 >C2H5OOH +P-C4H9 1.680E+13 0.0 85.5 C2H5O2 +C4H10 >C2H5OOH +S-C4H9 1.120E+13 0.0 74.0 ---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - C2H5OOH +P-C4H9 >C2H5O2 +C4H10 1.130E-12 6.76 -18.1 C2H5OOH +S-C4H9 >C2H5O2 +C4H10 4.440E-13 6.89 -15.2 ---- ************************************************************************ **** 10. C2H5OOH REACTIONS ************************************************************************ ---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - ---- 23b ---- C2H5OOH >C2H5O +OH 1.100E+16 0.0 182.0 ---- - INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - ---- C2H5O +OH >C2H5OOH 9.270E+25 -3.51 20.00 ---- ---- NIST 2000. CEC 94 Uncertainty=2.0, (400-800K) C2H5OOH =C2H5O +OH 4.000E+15 0.0 179.6 ************************************************************************ **** 11. C3H5O1 REACTIONS **** ************************************************************************ ---- Ninguna sugerencia en NIST ---- @ H ---- | | ---- O=C-C-C-H ---- | | | ---- H H H ---- ---- LT14 BETA SCISSSION FOR O=R@ - ---- No hay formadores de las siguientes dos especies:(se omiten) ---- 1-2C3O >CH3 +CH2CO 3.700E+13 0.0 120.0 ---- 3-1C3O >C2H4 +CHO 3.700E+13 0.0 120.0 C2H5CO >CH3 +CH2CO 3.700E+13 0.0 120.0 ---- 3C2H4CHO>C2H4 +CHO 3.700E+13 0.0 120.0 CH3COCH2>CH3 +CH2CO 3.700E+13 0.0 120.0 ---- LT16 SCISSION FROM ACETYLRADICAL - ---- korig=(1.580E+13/0.0/72.0); korig_back=(1.580E+11/0.0/25.00) ---- Watkins, K. W.; Thompson, W. W. (1973) Addition of Ethyl Radicals to ---- Carbon Monoxide. Kinetic and Thermochemical. Properties of the Propionyl Radical. ---- Int. J. Chem. Kinet. 5, 791. (0.01-0.35Bar; 238-278K) C2H5CO =C2H5 +CO 5.890E+12 0.0 60.3 ************************************************************************ **** 12. C3H5O2 REACTIONS ************************************************************************ ---- Jenkin, M.E.; Cox, R.A.; Emrich, M.; Moortgat, G.K ---- Mechanisms of the Cl-atom-initiated oxidation of acetone and hydroxyacetone in air ---- J. Chem. Soc. Faraday Trans. vol.89. p.2983-2991. 1993. 298K. 0.93Bar ---- kcin=(1.600E+06/0/0) (1-OC3O2->CH3CO+CH2O) ---- H ---- | ---- H H-C-H ---- | | ---- @-O-C----C=O ---- | ---- H ---- - R17 BETA SCISSSION for O=R-O@ - 1-OC3O2 >CH3CO +CH2O 0.300E+15 0.0 212.55 3-OC3O1 >CH2CHO +CH2O 0.300E+15 0.0 212.55 2-OC3O1 >CH3CHO +CHO 0.300E+15 0.0 212.55 ---- - INVERSE: R17 BETA SCISSSION for O=R-O@ - CH3CO +CH2O >1-OC3O2 0.793E+06 1.48 196.65 CH2CHO +CH2O >3-OC3O1 0.793E+06 1.48 196.65 CH3CHO +CHO >2-OC3O1 0.793E+06 1.48 196.65 ************************************************************************ **** 13. C3H6O REACTIONS ************************************************************************ ****************************************** **** 01. C3H6O Consumption ****************************************** ---- ----O---- ---- | | => OXETAN ---- C---C---C ---- ---- Decomposition ---- korig_fwd=(2.565E+16/0.0/263.01); kcin_back=(5.130E+15/0.0/264.00) ---- NIST 2000: Zalotai, L.; Hunyadi-Zoltan, Zs.; Berces, T.; Marta, F. ---- Kinetics of gas phase decomposition of oxetan and oxetan-2,2-d2 ---- Int. J. Chem. Kinet. vol.15; p.505;1985. Uncerta=2.04 OXETAN >C2H4 +CH2O 2.630E+15 0.0 259.41 ---- Inverse Oxetan ---- 32b: Clarke, M.J.; Holbrook, K.A. ---- Thermolysis of 2-Ethyloxetan. J. Chem. Soc. Faraday Trans. 1: ---- vol.73. p.890. 1977. (699-752K; 0.0, 0.04Bar). Unceertaninty=1.91 CH2O +C2H4 >OXETAN 9.080E+28 -5.28 278.0 ---- ---- H atom abstraction ---- Duke, M.G.; Holbrook, K.A ---- Reactions of methyl radicals with oxetan, 2-methyloxetan and 2,4-dimethyloxetan ---- J. Chem. Soc. Faraday Trans. 1: vol76, p.1232, 1980. 373 - 465K; 0.07-0.1Bar. ---- Uncertainty=1.55. OXETAN +O2 =2C3H5OCY+HO2 4.000E+13 0.0 257.32 OXETAN +H =2C3H5OCY+H2 2.000E+13 0.0 34.73 OXETAN +O =2C3H5OCY+OH 1.910E+12 0.0 21.97 OXETAN +OH =2C3H5OCY+H2O 4.100E+06 2.0 -7.02 OXETAN +HO2 =2C3H5OCY+H2O2 2.900E+04 2.6 58.20 OXETAN +CH3 =2C3H5OCY+CH4 1.950E+11 0.0 35.23 ************************************************************************ **** 14. C3H6O3 REACTIONS ************************************************************************ ---- H ---- | ---- H-C-OOH ---- | ---- CH3-C=O ---- ---- korig=(0.400E+16/0.0/125.52) ---- NIST 2000, Devush, S.S.; Prisyazhnyuk, Z.P.; Koval'skaya, A.M. ---- Kinetics of the thermal gas phase decomposition of C1-C4 organic peracids ---- Kinet. Catal. vol 24.p.1098, 1983. (403-513K; 1.1 Bar) Uncertainty=5.0 ---- kcin=(1.35E+13/0.0/138.852, +/-13.88KJ) ---- - R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H - 2OC3HP1 >1-OC3O2 +OH 0.400E+16 0.0 125.52 1OC3HP3 >3-OC3O1 +OH 0.400E+16 0.0 125.52 1OC3HP2 >2-OC3O1 +OH 0.400E+16 0.0 125.52 ---- - INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H - 1-OC3O2 +OH >2OC3HP1 0.324E+09 0.991 -58.58 3-OC3O1 +OH >1OC3HP3 0.324E+09 0.991 -58.58 2-OC3O1 +OH >1OC3HP2 0.324E+09 0.991 -58.58 ************************************************************************ **** 15. C3H7 REACTIONS ************************************************************************ ---- LT16 SCISSION FROM ACETYLRADICAL - ---- korig_f=(1.580E+13/0.0/72.0) ---- Cadman, P.; Dodwell, C.; Trotman-Dickenson, A.F.; White, A.J. ---- The kinetics of hydrogen abstraction by difluoroamino-radicals, ---- from propionaldehyde, and n- and iso-butyraldehyde, and their acyl radical decompositions. ---- J. Chem. Soc. A:. p.2371; 1970. Uncertainty=1.1; (353-423K; 0,0-0,04Bar) C3H7CO =N-C3H7 +CO 3.160E+12 0.0 39.82 ---- C3H7CO >N-C3H7 +CO 1.580E+13 0.0 72.00 ---- INVERSE: LT16 SCISSION FROM ACETYLRADICAL - ---- N-C3H7 +CO >C3H7CO 1.580E+11 0.0 25.0 ---- ---- R7 ADDITION OF MOLECULAR OXYGEN - ---- Atkinson, Baulch.. 1994.(I-C3H7+O2>I-C3H7O2) kcin=(6.62E+12/0/0) ---- Slagle, I.R.; Park 1985.(N-C3H7+O2>N-C3H7O2) kcin=(3.40E+12/0/0) ---- NIST 2000: Ruiz, R.P.; Bayes, K.D. ---- Rates of reaction of propyl radicals with molecular oxygen. ---- J. Phys. Chem. vol. 88. p.2592. 1984. (298K; 0.01Bar) I-C3H7 +O2 =I-C3H7O2 8.500E+12 0.0 0.0 N-C3H7 +O2 =N-C3H7O2 3.300E+12 0.0 0.0 ---- INVERSE: R7 ADDITION OF MOLECULAR OXYGEN - ---- I-C3H7O2>I-C3H7 +O2 1.550E-04 5.75 119.0 ---- N-C3H7O2>N-C3H7 +O2 2.060E-05 6.07 119.0 ---- Tsang ---- N-C3H7 +O2 =N-C3H7O2 1.630E+19-2.7 0.0 ---- I-C3H7 +O2 =I-C3H7O2 8.500E+12 0.0 0.0 ---- Atkinson ---- N-C3H7 +O2 =N-C3H7O2 3.400E+12 0.0 0.0 ---- I-C3H7 +O2 =I-C3H7O2 6.620E+12 0.0 0.0 ---- ---- NIST 2000:Reacciones entre radicales ---- Tsang 1988. ---- Uncertainty=3.0 N-C3H7 +C2H3 =C2H2 +C3H8 1.211E+12 0.0 0.0 ************************************************************************ **** 16. C3H7O REACTIONS ************************************************************************ ---- korig_N=(0.170E+14/0.0/74.48) ---- korig_I=(0.150E+14/0.0/61.92) ---- - R12 BETA SCISSSION for R-O@ - ---- NIST 2000: Baldwin 1977. Uncertainty=3.16 N-C3H7O =C2H5 +CH2O 6.310E+13 0.0 81.56 ---- NIST 2000: Baldwin 1977. The Gas-Phase Decomposition of Alkoxy Radicals ---- Int. J. Chem. Kinet. vol. 11. p977. 1979. (1.01Bar; 393-433K) Measure!! kcin=(3.98E+14/0.0/72.003) I-C3H7O =CH3CHO +CH3 3.980E+14 0.0 72.00 ---- - INVERSE R12 BETA SCISSSION for R-O@ - ----C2H5 +CH2O >N-C3H7O 0.200E+06 1.0 41.09 ----CH3CHO +CH3 >I-C3H7O 0.200E+06 1.0 41.09 ---- ---- korig=(1.750E+11/0.0/7.31) ---- Heicklen, J.The decomposition of alkyl nitrites and the reactions of alkoxyl radicals ---- Adv. Photochem.vol.14. p 177. 1988. 250-361K. Uncertainty=1.3 N-C3H7O +O2 =C2H5CHO +HO2 1.951E+11 0.0 8.281 ----C2H5CHO +HO2 >N-C3H7O +O2 7.080E+03 1.94 134.0 ---- ---- NIST 2000:Balla, R.J.; Nelson, H.H.; McDonald, J.R (ACETONA!!!) ---- Kinetics of the reactions of isopropoxy radicals with NO, NO2, and O2 ---- Chem. Phys. vol.99. p.323. 1985. (298-383K, 0.07Bar). I-C3H7O +O2 =CH3COCH3+HO2 9.095E+09 0.0 1.630 ---- ---- H-Atom Abstraction, decomposition ---- NIST 2000: Batt, L. ---- The Gas-Phase Decomposition of Alkoxy Radicals. Int. J. Chem. Kinet ---- vol.11, p.977, 1979. 1.01Bar, (393-433K) Uncertainty = 3.16 Measure!! I-C3H7O =CH3COCH3+H 2.000E+14 0.0 89.79 ---- ---- Decomposition ---- ---- No hay datos de esta reaccion se saca !!! ---- N-C3H7O >C2H5CHO +H 0.100E+15 0.0 0.00 ---- C2H5CHO +H >N-C3H7O 0.104E+13 -0.146 -62.76 ************************************************************************ **** 17. C3H7O2 REACTIONS ************************************************************************ ---- Nota de Bibliografia: ---- R.D. Wilk, N.P. Cernansky and R.S. Cohen. "The Oxidation of Propane at Low and Transition Temperatures" ---- Combustion Sci and Technology. 1986 Vol 49 pp 41-78 ---- Proceso de Isomerization: ---- C3H7O2 -> C3H6OOH ---- C3H6OOH -> C3H6O + OH Aca tengo formacion de Oxido de Propeno, en los exp.1o. tengo formacion de ---- propeno y luego el oxido, luego este paso no parece muy importante cuando se considera solo el propano como ---- combustible, y solo debe considerarse cuando el combustible es un alcano superior. ---- Debo incluir este paso en mi mecanismo, pues es uno de los principlaes productos !!!! ---- C3H6OOH + O2 -> O2C3H6OOH ---- O2C3H6OOH -> HO2C3H5O + OH ---- HO2C3H5O -> C3H5O2 + OH ---- ---- ---- - R8 INTERNAL H ABSTRACTION - ---- 21b I-C3H7O2>1C3OOH2 4.160E+12 0.0 138.0 N-C3H7O2>3C3OOH1 2.600E+11 0.0 110.0 N-C3H7O2>2C3OOH1 1.390E+12 0.0 118.0 ---- - INVERSE: R8 INTERNAL H ABSTRACTION - 1C3OOH2 >I-C3H7O2 2.220E+10-0.138 69.6 2C3OOH1 >N-C3H7O2 2.980E+09 0.0447 63.8 3C3OOH1 >N-C3H7O2 0.100E+14 0.0 167.36 ---- ---- - C1 FORMATION OF O-HETEROCYKLEN - ---- ---O-- ---- | | => 2MOXI => Epoxypropane => Methyloxirane => Propylene Oxide ---- CH2---CH--CH3 ---- ---- 21 1C3OOH2 =2MOXI +OH 1.300E+10 0.0 65.5 2C3OOH1 =2MOXI +OH 1.300E+10 0.0 65.5 3C3OOH1 =OXETAN +OH 1.300E+10 0.0 62.9 ---- - LT6 FORMATION OF C-fuel-ALKEN - 1C3OOH2 =C3H6 +HO2 1.000E+09 0.0 31.4 2C3OOH1 =C3H6 +HO2 1.000E+09 0.0 31.4 ---- ---- - FORMATION OF O-HETEROCYKLEN - ---- NIST 2000: Grigoryan, R.R.; Arsentiev, S.D.; Mantashyan, A.A ---- Propylene epoxidation in the gas-phase oxidation of propane-propylene mixtures ---- React. Kinet. Catal. Lett. vol 21, p.347. 1982. ---- 633K; 0.28-0.36 BAR N-C3H7O2+C3H6 =N-C3H7O +2MOXI 1.698E+07 0.0 0.0 ---- NIST:2000. Sway, M.I.; Waddington, D.J. ---- Reactions of oxygenated radicals in the gas phase. Part 12. ---- The reactions of isopropylperoxy radical and alkenes ---- J. Chem. Soc. Perkin Trans. 2. p.139, 1983 ---- 303-408K, 1 Bar I-C3H7O2+C3H6 =I-C3H7O +2MOXI 8.321E+11 0.0 67.7 ---- ---- 11 Nov 2004 ---- NIST ---- Lifshitz, A.; Tamburu, C. Isomerization and decomposition of propylene oxide. ---- Studies with a single-pulse shock tube. J. Phys. Chem. Vol:98; 1161-1170 1994 ---- 835-1160K ; 2.03 Bar. ---- kcin1=(2.45x1013 (s-1) e-58.42 (kcal/mole)/RT) ---- kcin2=(2.45x1013 (s-1) e-58.82 (kcal/mole)/RT) ---- kcin3=(1.82x1014 (s-1) e-58.42 (kcal/mole)/RT) 2MOXI =CHO +C2H5 2.450E+13 0.0 244.19 2MOXI =CH3 +CH2CHO 2.450E+13 0.0 245.86 2MOXI =C2H5CHO 1.820E+14 0.0 244.19 ---- ---- **** INICIO DE SECCION 1 ---- Todas estas reacciones funcionan correctamente!!!! ---- ---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - ---- 22b, nur HO2 27b ---- NIST 2000: Wilk, R.D., Cernansky, N.P., Pitz, W.J., and Westbrook, C.K. ---- Propene oxidation at low and intermediate temperatures: A detailed chemical kinetic study. ---- Combust. Flame, 1989, v. 77, pp. 145-1700 I-C3H7O2+HO2 >IC3H7OOH+O2 4.640E+10 0.0 -10.8 I-C3H7O2+CH2O >IC3H7OOH+CHO 1.000E+12 0.0 42.0 I-C3H7O2+CH3CHO >IC3H7OOH+CH3CO 1.000E+12 0.0 42.0 I-C3H7O2+C2H5CHO >IC3H7OOH+C2H5CO 1.000E+12 0.0 42.0 ---- I-C3H7O2+N-C3H7 =I-C3H7O +N-C3H7O 3.800E+12 0.0 -5.06 I-C3H7O2+I-C3H7 =I-C3H7O +I-C3H7O 3.800E+12 0.0 -5.06 I-C3H7O2+CH3 =I-C3H7O +CH3O 3.800E+12 0.0 -5.06 I-C3H7O2+C3H6 =IC3H7OOH+C3H5 3.200E+11 0.0 62.28 ---- Esta estaba habilitada I-C3H7O2+CH4 =IC3H7OOH+CH3 1.140E+13 0.0 85.52 ---- Hasta aca la habilitada I-C3H7O2+CH3OH =IC3H7OOH+CH2OH 6.300E+12 0.0 80.92 ---- Konnov 1999 I-C3H7O2+C2H4 =IC3H7OOH+C2H3 7.100E+11 0.0 104.50 ---- N-C3H7O2+HO2 >NC3H7OOH+O2 4.640E+10 0.0 -10.8 N-C3H7O2+CH2O >NC3H7OOH+CHO 1.000E+12 0.0 42.0 N-C3H7O2+CH3CHO >NC3H7OOH+CH3CO 1.000E+12 0.0 42.0 N-C3H7O2+C2H5CHO >NC3H7OOH+C2H5CO 1.000E+12 0.0 42.0 ---- N-C3H7O2+N-C3H7 =N-C3H7O +N-C3H7O 3.800E+12 0.0 -5.06 N-C3H7O2+I-C3H7 =N-C3H7O +I-C3H7O 3.800E+12 0.0 -5.06 N-C3H7O2+CH3 =N-C3H7O +CH3O 3.800E+12 0.0 -5.06 N-C3H7O2+C3H6 =NC3H7OOH+C3H5 3.200E+11 0.0 62.28 N-C3H7O2+CH4 =NC3H7OOH+CH3 1.140E+13 0.0 85.52 N-C3H7O2+CH3OH =NC3H7OOH+CH2OH 6.300E+12 0.0 80.92 ---- Konnov 1999 N-C3H7O2+C2H4 >NC3H7OOH+C2H3 7.100E+11 0.0 104.50 ---- ---- Estas reacciones corresponden a las inversas originales !! ---- - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - IC3H7OOH+O2 >I-C3H7O2+HO2 2.540E+10-0.121 126.0 IC3H7OOH+CHO >I-C3H7O2+CH2O 2.680E+06 0.982 0.785 IC3H7OOH+CH3CO >I-C3H7O2+CH3CHO 1.150E+06 1.18 17.4 IC3H7OOH+C2H5CO >I-C3H7O2+C2H5CHO 1.410E+09 0.235 22.4 ---- NC3H7OOH+O2 >N-C3H7O2+HO2 2.050E+10-0.0893 126.0 NC3H7OOH+CHO >N-C3H7O2+CH2O 2.170E+06 1.01 0.688 NC3H7OOH+CH3CO >N-C3H7O2+CH3CHO 9.260E+05 1.22 17.3 NC3H7OOH+C2H5CO >N-C3H7O2+C2H5CHO 1.410E+09 0.267 22.3 ---- ---- **** FINAL DE SECCION 1 ---- ---- - R13 ADDITION OF MOLECULAR OXYGEN - ---- ---- H OOH H ---- | | | ---- @--O--O--C--C--C--H => 1OO3OOH2 ---- | | | ---- H H H ---- 2C3OOH1 +O2 >2OO3OOH1 0.100E+13 0.0 0.00 3C3OOH1 +O2 >3OO3OOH1 0.100E+13 0.0 0.00 1C3OOH2 +O2 >1OO3OOH2 0.100E+13 0.0 0.00 ---- ---- INVERSE: R13 ADDITION OF MOLECULAR OXYGEN - ---- 1OO3OOH2>1C3OOH2 +O2 0.217E+15 -1.2 122.17 ---- 2OO3OOH1>3C3OOH1 +O2 0.217E+15 -1.2 122.17 ---- 3OO3OOH1>2C3OOH1 +O2 0.217E+15 -1.2 122.17 ---- ---- ---- Aplico las igualdad ---- Decomposition N-C3H7O2=CH2O +C2H5O 0.100E+10 0.0 83.68 N-C3H7O2=C2H5CHO +OH 0.100E+10 0.0 83.68 I-C3H7O2=CH3COCH3+OH 0.100E+10 0.0 83.68 I-C3H7O2=CH2O +C2H5O 0.100E+10 0.0 83.68 ---- Inverse Decomposition ----(*)CH2O +C2H5O >N-C3H7O2 0.100E+01 0.0 0.00 ----(*)C2H5CHO +OH >N-C3H7O2 0.331E+02 1.37 199.58 ----(*)CH3COCH3+OH >I-C3H7O2 0.182E+01 17.1 212.97 ----(*)CH2O +C2H5O >I-C3H7O2 1.000E+00 0.0 0.00 ---- **** INICIO SECCION 2 ---- Estas reacciones funcoinan correctamente !!! ---- ---- Decomposition ---- korigin_f=(0.130E+12/0.0/0.00) ---- NIST 2000: Adachi, H.; Basco, N. ---- Spectra of Propylperoxy Radicals and Rate Constants for Mutual Interaction ---- Int. J. Chem. Kinet.vol 14. p 1125 1982 . 298K 0.49 Bar kcin=(1.999E+11/0/0) Experimental ---- NIST 2000: Atkinson 1997 ---- kcin=(1.813E+11/0.0/0.00) N-C3H7O2+N-C3H7O2>N-C3H7O +N-C3H7O +O2 0.130E+12 0.0 0.00 N-C3H7O2+I-C3H7O2>N-C3H7O +I-C3H7O +O2 0.100E+12 0.0 0.00 N-C3H7O2+C2H5O2 >N-C3H7O +C2H5O +O2 0.130E+12 0.0 0.00 N-C3H7O2+CH3O2 >N-C3H7O +CH3O +O2 0.165E+12 0.0 0.00 ---- Inverse Decomposition N-C3H7O +N-C3H7O +O2 >N-C3H7O2+N-C3H7O2 0.381E+01 2.61 1.57 N-C3H7O +I-C3H7O +O2 >N-C3H7O2+I-C3H7O2 1.000E+00 0.0 0.00 N-C3H7O +C2H5O +O2 >N-C3H7O2+C2H5O2 1.000E+00 0.0 0.00 N-C3H7O +CH3O +O2 >N-C3H7O2+CH3O2 1.000E+00 0.0 0.00 ---- **** FINAL SECCION 2 ---- ---- Decomposition ---- NIST 2000: Wallington, T.J.; Dagaut, P.; Kurylo, M.J. ---- Ultraviolet absorption cross sections and reaction kinetics and mechanisms ---- for peroxy radicals in the gas phase. Chem. Rev.vol. 92. p.667-710. 1992. ---- kcin-(1.391E+12/0.0/21.28) I-C3H7O2+I-C3H7O2>I-C3H7O +I-C3H7O +O2 0.700E+11 0.0 0.00 ---- NIST 2000: Atkinson 1997 ---- kcin(0.100E+12/0.0/0.0) I-C3H7O2+C2H5O2 >I-C3H7O +C2H5O +O2 0.100E+12 0.0 0.00 ---- NIST 2000: Alcock, W.G.; Mile, B. ---- The Gas-Phase Reactions of Alkylperoxy Radicals Generated by a Photochemical Technique ---- CandF vol. 24, p.125, 1975. 373K, 0.06-0.67 Bar. ---- I-C3H7O2+CH3O2>Products. (100% this channel!) ---- kcin=(6.204E+11/0.0/0.0) I-C3H7O2+CH3O2 >I-C3H7O +CH3O +O2 0.135E+12 0.0 0.00 ---- ---- Inverse Decomposition I-C3H7O +I-C3H7O +O2 >I-C3H7O2+I-C3H7O2 0.200E+04 1.66 33.35 I-C3H7O +C2H5O +O2 >I-C3H7O2+C2H5O2 1.000E+04 0.0 0.00 I-C3H7O +CH3O +O2 >I-C3H7O2+CH3O2 1.000E+04 0.0 0.00 ---- ---- **** INICIO SECCION 3 ---- Todas las reacciones funcionan !!! ---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - ---- Konnov, 1999: ---- kcini1=(6.03E+12/0/81.01) ---- kcini2=(1.99E+12/0/71.27) ---- kcini3=(6.03E+12/0/81.01) ---- kcini4=(1.99E+12/0/71.27) ---- Las dos primeras estaban I-C3H7O2+C3H8 >IC3H7OOH+N-C3H7 6.000E+12 0.0 58.6 I-C3H7O2+C3H8 >IC3H7OOH+I-C3H7 2.000E+12 0.0 46.101 N-C3H7O2+C3H8 >NC3H7OOH+N-C3H7 6.000E+12 0.0 58.6 N-C3H7O2+C3H8 >NC3H7OOH+I-C3H7 2.000E+12 0.0 46.101 ---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - IC3H7OOH+N-C3H7 >I-C3H7O2+C3H8 6.000E+12 0.0 58.6 IC3H7OOH+I-C3H7 >I-C3H7O2+C3H8 2.000E+12 0.0 46.101 NC3H7OOH+N-C3H7 >N-C3H7O2+C3H8 6.000E+12 0.0 58.6 NC3H7OOH+I-C3H7 >N-C3H7O2+C3H8 2.000E+12 0.0 46.101 ----- **** FINAL SECCION 3 ---- ---- ************************************************************************ **** 18. C3H8O2 REACTIONS ************************************************************************ ---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - ---- Kcin_orig_1:(0.830E+15/0.0/179.91) ---- Kcin_orig_2:(0.830E+15/0.0/179.91) ---- Konnov 1999 : ---- kcin1= (4.000E+15/0/179.7) ---- kcin2= (4.000E+15/0/179.7) ---- Kirk, A.D.; Knox, J.H. ---- The pyrolysis of alkyl hydroperoxides in the gas phase ---- Trans. Faraday Soc. vol. 56; p.1296-1303. 1960 Experimental ---- 553 - 653 K. Uncertainty=2.0. ---- kcin=(1.580E+15/0/167.121) ---- Se mantienen al originial. ---- 24 th. ---- 24th. Symposium (International) on Combustion, 1992. p.637-643 ---- The pyrolysis of organic hydroperoxides (ROOH) ---- K.A. Sahetchian, et al. ---- 23b NC3H7OOH=N-C3H7O +OH 1.100E+16 0.0 182.0 IC3H7OOH=I-C3H7O +OH 0.830E+15 0.0 179.91 ---- ---- Inversas para estas nuevas reacciones !!!! ---- INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - ---- N-C3H7O +OH >NC3H7OOH 6.830E+16 -0.779 4.81 ---- I-C3H7O +OH >IC3H7OOH 1.000E+11 0.0 0.00000042 ---- ************************************************************************ **** 19. C3H7O4 REACTIONS ************************************************************************ ---- ---- ---- H OOH H ---- | | | ---- H--O--O--C--C--C--H => 1-2C3HP ---- | | | ---- H @ H ---- ---- ---- - R14 INTERNAL H ABSTRACTION - 1OO3OOH2=1-2C3HP 1.000E+11 0.0 56.43 3OO3OOH1=1-3C3HP 2.000E+11 0.0 46.398 2OO3OOH1=1-2C3HP 2.000E+11 0.0 71.06 ---- - INVERSE: R14 INTERNAL H ABSTRACTION - ---- 1-2C3HP >1OO3OOH2 1.000E+11 0.0 43.4 ---- 1-3C3HP >3OO3OOH1 2.000E+11 0.0 27.6 ---- 1-2C3HP >2OO3OOH1 2.000E+11 0.0 52.3 ---- - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS - 1-2C3HP >2OC3HP1 +OH 1.000E+09 0.0 31.4 1-3C3HP >1OC3HP3 +OH 1.000E+09 0.0 31.4 1-2C3HP >1OC3HP2 +OH 1.000E+09 0.0 31.4 ************************************************************************ **** 20. C3H7OOH REACTIONS ************************************************************************ ---- Incluidas en C3H8O2 !!!! ****************************************** **** 22. C3H5O Reactions ****************************************** ---- Thermal decomposition 2C3H5OCY =C2H4 +CHO 8.000E+10 0.0 146.44 ---- Reactions with CH3 2C3H5OCY+CH3 =C2H4 +CH3CHO 1.000E+13 0.0 0.00 2C3H5OCY+CH3 =C3H6 +CH2O 2.000E+13 0.0 0.00 ****************************************** ************************************************************************ **** 23. C3H6O1 REACTIONS ************************************************************************ ---- Ernst, J.; Spindler, K.; Wagner, H.Gg. ---- Untersuchungen zum Thermischen Zerfall von Acetaldehyd und Aceton ---- Ber. Bunsenges. Phys. Chem. vol.80.p.645, 1976. (1350-1659K; 0.2-73.99Bar) ---- 30b CH3COCH3=CH2CO +CH4 2.610E+11 0.0 191.00 CH3COCH3=CO +C2H6 3.500E+14 0.0 174.00 CH3COCH3=CH3CO +CH3 2.700E+16 0.0 342.00 ---- 31b -----CH3CO +CH3 >CH3COCH3 2.250E+21 -2.60 191.00 -----CH2CO +CH4 >CH3COCH3 5.000E+18 -2.77 120.00 -----C2H6 +CO >CH3COCH3 5.810E+21 -2.68 171.00 ---- ---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - ----26b ---- Kcin_orig_1=(1.000E+12/0.0/42.0) ---- kcin_orig_2=(2.000E+13/0.5/175.0) ---- NIST 2000, Baldwin, 1979 ---- Rate constants for reactions of HO2 radicals with alkanes, aldehydes, and related compounds C2H5CHO +HO2 =C2H5CO +H2O2 1.520E+09 0.0 0.0 ---- Produce error numerico ----C2H5CHO +O2 =C2H5CO +HO2 8.070E+01 0.0 0.0 ---- ---- Atkinson, 1997. C2H5CHO +OH =C2H5CO +H2O 1.210E+13 0.0 0.0 C2H5CHO +CH3O2 =C2H5CO +CH3O2H 1.000E+12 0.0 42.0 C2H5CHO +CH3 =C2H5CO +CH4 2.200E+11 0.0 48.6 ---- NIST 2000: Pendiente, Singleton, D. L.; Irwin, R. S.; Cvetanovic, R. J. (1977) ---- Arrhenius Parameters for the Reactions of O(3P) Atoms with Several Aldehydes ---- and the Trend in Aldehydic C-H Bond Dissociation Energies. ---- J. Chem. 55, 3321. kcin=(5.680E+12/0/6.430) C2H5CHO +H =C2H5CO +H2 9.380E+06 2.0 32.2 ---- kcin_orig=(7.270E+05/2.4/23.01) C2H5CHO +O =C2H5CO +OH 5.680E+12 0.0 6.437 ---- ---- NIST 2000 Peter, A., Acs, G., Horvath, I., Huhn, P. ---- Decomposition of propionaldehyde initiated by the thermal decomposition of azoethane. ---- Acta Chim. Hung. 108, 235 . 1981 C2H5CHO +C2H5 =C2H5CO +C2H6 5.000E+10 0.0 26.292 ---- ---- - INVERSE EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - ---- 22b 36b 37b Corresponden a las cieticas originales ----C2H5CO +HO2 >C2H5CHO +O2 5.150E+10 0.856 18.6 ----C2H5CO +CH3O2H >C2H5CHO +CH3O2 6.190E+02 2.48 35.3 ----C2H5CO +H2O2 >C2H5CHO +HO2 3.020E+14 -0.92 517.0 ----C2H5CO +H2O >C2H5CHO +OH 1.440E+14-0.38 141.0 ----C2H5CO +CH4 >C2H5CHO +CH3 0.000E+00 0.0 00.0 ----C2H5CO +OH >C2H5CHO +O 0.000E+00 0.0 00.0 ----C2H5CO +H2 >C2H5CHO +H 0.000E+00 0.0 00.0 ************************************************************************ **** 24. C4H7O1 REACTIONS **** Raul: En el analisis de flujo no existen formadores. Se omiten ************************************************************************ ---- ---- H H H H ---- | | | | ---- O=C-C-C-C-H -> 1-3C4O ---- | | | ---- H H H ---- ---- - LT14 BETA SCISSSION FOR O=R@ - ---- 1-3C4O >CH3CO +C2H4 3.700E+13 0.0 120.0 ---- 1-2C4O >C2H5 +CH2CO 3.700E+13 0.0 120.0 ---- 4-1C4O >CH2CHO +C2H4 3.700E+13 0.0 120.0 C3H7CO =C2H5 +CH2CO 3.700E+13 0.0 120.0 ************************************************************************ **** 25. C4H7O2 REACTIONS ************************************************************************ ---- ---- ---- H O H H ---- | | | | ---- O=C-C-C-C-H -> 2-OC4O1 ---- | | | ---- H H H ---- ---- ---- - R17 BETA SCISSSION for O=R-O@ - ---- 4-OC4O2 =CH3COCH2+CH2O 2.000E+13 0.0 62.8 ---- 1-OC4O2 =C2H5CO +CH2O 2.000E+13 0.0 62.8 ---- 3-OC4O2 =CH3CHO +CH3CO 2.000E+13 0.0 62.8 ---- 4-OC4O1 =3C2H4CHO+CH2O 2.000E+13 0.0 62.8 ---- 3-OC4O1 =CH3CHO +CH2CHO 2.000E+13 0.0 62.8 ---- 2-OC4O1 =C2H5CHO +CHO 2.000E+13 0.0 62.8 ---- 4-OC4O2 >CH3COCH2+CH2O 2.000E+13 0.0 62.8 1-OC4O2 >C2H5CO +CH2O 2.000E+13 0.0 62.8 3-OC4O2 >CH3CHO +CH3CO 2.000E+13 0.0 62.8 4-OC4O1 >3C2H4CHO+CH2O 2.000E+13 0.0 62.8 3-OC4O1 >CH3CHO +CH2CHO 2.000E+13 0.0 62.8 2-OC4O1 >C2H5CHO +CHO 2.000E+13 0.0 62.8 ---- ---- ---- SE INCLUYEN LAS REACCIONES INVERSAS VERIFICAR PARAMETROS CINETICOS ---- INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H - CH3COCH2+CH2O >4-OC4O2 2.000E+11 0.0 0.0 C2H5CO +CH2O >1-OC4O2 2.000E+11 0.0 0.0 CH3CHO +CH3CO >3-OC4O2 2.000E+11 0.0 0.0 3C2H4CHO+CH2O >4-OC4O1 2.000E+11 0.0 0.0 CH3CHO +CH2CHO >3-OC4O1 2.000E+11 0.0 0.0 C2H5CHO +CHO >2-OC4O1 2.000E+11 0.0 0.0 ************************************************************************ **** 26. C4H8O REACTIONS ************************************************************************ ---- ---- H ---O--- H ---- | | | | ---- H-C--C-----C--C-H -> 2-3MOXI ---- | | | | ---- H H H H ---- ---- ---- NIST 2000: Zalotai, L.; Berces, T.; Marta, F. ---- Kinetics and energy transfer in the thermal decomposition of 2-methyloxetane ---- and 3-methyloxetane. J. Chem. Soc. Faraday Trans. 1: ---- vol.86, p.21.00. 1990. (660 - 760 K; 0.01-0.03 Bar). Uncer=1.32 ---- 2-3MOXI analog dem Abbau von 2MOXI 2-3MOXI >C3H6 +CH2O 3.390E+14 0.0 249.43 ---- ---- ---O--- H H ---- | | | | ---- H-C-----C-----C--C-H -> 2EOXI "Ethyloxirane" ---- | | | | ---- H H H H ---- ---- NIST 2000: Zalotai, L.; Berces, T.; Marta, F. ---- Kinetics and energy transfer in the thermal decomposition of 2-methyloxetane ---- and 3-methyloxetane. J. Chem. Soc. Faraday Trans. 1: ---- vol.86, p.21.00. 1990. (660 - 760 K; 0.01-0.03 Bar). Uncer=1.32 2EOXI >C3H6 +CH2O 3.390E+14 0.0 249.43 ---- ---- 11-11-2004 Salen ! ---- NIST 2000: Flowers, M.C.; Penny, D.E. ---- Kinetics of the Thermal Gas-phase Decomposition of 1,2-Epoxybutane ---- J. Chem. Soc. Faraday Trans. 1. vol 71, p.851. 1975. ---- 2EOXI >NC3H7CHO 8.910E+13 0.0 238.40 ---- 2EOXI >IC3H7CHO 2.090E+13 0.0 220.58 ---- Articulo: 2EOXI >2C4H8O 1.150E+12 0.0 0.00 ---- ---- NIST, 2000: Wallington, T.J.; Kurylo, M.J. ---- Flash photolysis resonance fluorescence investigation of the gas-phase ---- reactions of OH radicals with a series of aliphatic ketones over the ---- temperature range 240-440 K. J. Phys. Chem. vol 91. 5050. 1987 2EOXI +OH >2EOXIYL +H2O 1.150E+12 0.0 0.00 ---- ---- MECANISMO DE NANCY, F. BATTIN-LECLERC AND P. BARBE 17 MARCH 1997 2EOXI +H >H2 +CH2CO +C2H5 2.7E+07 2.0 1.1960 2EOXI +HO2 >H2O2 +CH2CO +C2H5 1.2E+12 0.0 3.7081 2EOXI +C2H5 >C2H6 +CH2CO +C2H5 6.0E+11 0.0 2.6316 2EOXI +OH >H2O +CH2CO +C2H5 7.8E+06 2.0 -0.183 ---- 2EOXIYL >CH2CHO +C2H4 2.0E+13 0.0 28.699 ---- ---- (NIST Datenbank) , ---- ---- ------O------ ---- | | ---- | H | H ---- | | | | ---- H-C-----C-----C--C-H -> 2MOXE ---- | | | | ---- H H H H ---- 2MOXE >C3H6 +CH2O 3.390E+14 0.0 249.43 ---- ---- THF ---- -----O---- ---- | | ---- C--C--C--C ---- NIST 2000: Schliephake, V.; Mix, K.-H.; Wagner, H.Gg ---- Investigations of the kinetics of the reactions of tetrahydrofurane, ---- tetrahydropyrane, cyclopentanone and cyclohexanone with atomic oxygen ---- Z. Phys. Chem. (Munich). vol. 150. p. 1. 1986. Experimentl (295-500K;0 Bar) THF +O >THFYL +OH 7.829E+13 0.0 15.80 ---- NIST: 2000, 86ATK2. Uncertainty=1.3 THF +OH >THFYL +H2O 9.040E+12 0.0 0.00 ---- NIST 2000: Lifshitz, A.; Bidani, M.; Bidani, S. ---- Thermal reactions of cyclic ethers at high temperatures. 2. ---- Pyrolysis of tetrahydrofuran behind reflected shocks ---- J. Phys. Chem. vol. 90. p3422, 1982. (1070-1530K; 2.13-8.61Bar). ---- Para la 2 reaccion originalmente:(THF>C2H4+CH2OCH2) pasa a (THF>C2H4+OXIRAN) THF >C3H6 +CH2O 8.240E+15 0.0 347.27 THF >C2H4 +OXIRAN 3.300E+16 0.0 347.27 ---- ---- Reacciones Nancy F. Battin, Leclerc and P. Barbe 17 march 1997 ---- Methathesis THF +H >H2 +THFYL 2.700E+07 2.0 5.00 ---- Radical Decomposition THFYL >CH2CHO +C2H4 2.0E+13 0.0 164.26 ---- ************************************************************************ **** 27. C4H8O3 REACTIONS ************************************************************************ ---- ---- ---- H OOH H H ---- | | | | ---- O=C---C---C--C-H -> 1OC4HP2 ---- | | | | ---- H H H H ---- ---- ---- - R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H - 2OC4HP4 =4-OC4O2 +OH 8.400E+14 0.0 180.1 2OC4HP1 =1-OC4O2 +OH 8.400E+14 0.0 180.1 2OC4HP3 =3-OC4O2 +OH 8.400E+14 0.0 180.1 1OC4HP4 =4-OC4O1 +OH 8.400E+14 0.0 180.1 1OC4HP3 =3-OC4O1 +OH 8.400E+14 0.0 180.1 1OC4HP2 =2-OC4O1 +OH 8.400E+14 0.0 180.1 ---- - INVERSE: R16 HOMOLITIC O-O BOUND SCISSSION for O=R-O2H - ---- 4-OC4O2 +OH >2OC4HP4 1.000E+11 0.0 0.0 ---- 1-OC4O2 +OH >2OC4HP1 1.000E+11 0.0 0.0 ---- 3-OC4O2 +OH >2OC4HP3 1.000E+11 0.0 0.0 ---- 4-OC4O1 +OH >1OC4HP4 1.000E+11 0.0 0.0 ---- 3-OC4O1 +OH >1OC4HP3 1.000E+11 0.0 0.0 ---- 2-OC4O1 +OH >1OC4HP2 1.000E+11 0.0 0.0 ************************************************************************ **** 28. C4H9 REACTIONS ************************************************************************ ---- 20b ---- Lenhardt, T.M.; McDade, C.E.; Bayes, K.D. ---- Rates of Reaction of Butyl Radicals with Molecular Oxygen ---- J. Chem. Phys. vol72. p.304. 1980. (298K; 0-0.01Bar). ---- - R7 ADDITION OF MOLECULAR OXYGEN - ---- 20b S-C4H9 +O2 =S-C4H9O2 1.000E+13 0.0 0.0 P-C4H9 +O2 =P-C4H9O2 4.500E+12 0.0 0.0 ---- - INVERSE: R7 ADDITION OF MOLECULAR OXYGEN - ---- S-C4H9O2>S-C4H9 +O2 5.270E+10 1.92 136.0 ---- P-C4H9O2>P-C4H9 +O2 4.710E+08 2.40 131.0 ---- ---- RAUL= NECESITO SABER QUE HACER CON I-C4H9O2 AND T-C4H9O2 ---- NIST 2000: Tsang 1990. Uncertainty=3.0 ---- I-C4H9 +O2 =I-C4H9O2 1.630E+19-2.7 0.0 ---- NIST 2000: Dilger, H.; Stolmar, M.; Tregenna-Piggott, P.L.W.; Roduner, E ---- Gas phase addition kinetics of the tert-butyl radical to oxygen ---- Ber. Bunsenges. Phys. Chem. vol.101.p.956-960. 1997 ---- 241-462K 1.52 Bar. ---- T-C4H9 +O2 =T-C4H9O2 4.089E+12 0.0 2.395 ---- Formation of Cyclic Ether !!!!! ---- NIST 2000 Baker, R.R.; Baldwin, R.R.; Walker, R.W. 1975 ---- 753K, 0.67 Bar S-C4H9 +O2 =OH +2-3MOXI 1.042E+10 0.0 0.0 S-C4H9 +O2 =OH +THF 2.601E+10 0.0 0.0 S-C4H9 +O2 =OH +2EOXI 1.198E+09 0.0 0.0 ************************************************************************ **** 29. C4H9O1 REACTIONS ************************************************************************ ---- - R12 BETA SCISSSION for R-O@ - ---- 24b ---- korigi=(2.510E+14/0.0/61.1) ---- NIST 2000: Baldwin, A.C.; Barker, J.R.; Golden, D.M.; Hendry, D.G. 1977. ---- Uncertainty=3.16. S-C4H9O >C2H5 +CH3CHO 1.760E+14 0.0 61.1 ---- NIST 2000: Batt, L. The Gas-Phase Decomposition of Alkoxy Radicals ---- Int. J. Chem. Kinet. vol.11, p.977. 1979. ---- : 7.94x1014 (s-1) e-79486 S-C4H9O =C2H5CHO +CH3 7.940E+14 0.0 79.48 ---- NIST 2000: Baldwin, A.C.; Golden, D.M. 1978. P-C4H9O >N-C3H7 +CH2O 3.980E+13 0.0 79.9 ---- - INVERSE: R12 BETA SCISSSION for R-O@ - C2H5 +CH3CHO >S-C4H9O 4.580E+32 -6.79 87.7 N-C3H7 +CH2O >P-C4H9O 2.070E+27 -4.81 73.2 ************************************************************************ **** 30. C4H9O2 REACTIONS ************************************************************************ ---- ---- ---- H OOH H H ---- | | | | ---- H-C---C---C--C-H -> 3C4OOH2 ---- | | | | ---- H H @ H ---- ---- ---- - R8 INTERNAL H ABSTRACTION - ---- 21b S-C4H9O2>3C4OOH2 1.390E+12 0.0 118.0 S-C4H9O2>1C4OOH2 2.080E+12 0.0 138.0 S-C4H9O2>4C4OOH2 2.600E+11 0.0 110.0 P-C4H9O2>2C4OOH1 1.390E+12 0.0 118.0 P-C4H9O2>3C4OOH1 1.730E+11 0.0 92.0 P-C4H9O2>4C4OOH1 3.260E+10 0.0 91.0 ---- - INVERSE: R8 INTERNAL H ABSTRACTION - 3C4OOH2 >S-C4H9O2 3.810E+09 0.00940 63.9 1C4OOH2 >S-C4H9O2 1.060E+10-0.131 69.6 4C4OOH2 >S-C4H9O2 1.330E+09-0.131 41.6 2C4OOH1 >P-C4H9O2 2.990E+09 0.0447 63.9 3C4OOH1 >P-C4H9O2 3.740E+08 0.0447 37.9 4C4OOH1 >P-C4H9O2 1.300E+08-0.0953 22.5 ---- ---- ---- H OOH H H ---- | | | | ---- H-C---C---C--C-H -> 3OO4OOH2 ---- | | | | ---- H H O H ---- | ---- O ---- | ---- @ ---- ---- - R13 ADDITION OF MOLECULAR OXYGEN - ---- 21b 4C4OOH2 +O2 =4OO4OOH2 4.500E+12 0.0 0.0 1C4OOH2 +O2 =1OO4OOH2 4.500E+12 0.0 0.0 3C4OOH2 +O2 =3OO4OOH2 1.000E+13 0.0 0.0 4C4OOH1 +O2 =4OO4OOH1 1.000E+13 0.0 0.0 3C4OOH1 +O2 =3OO4OOH1 1.000E+13 0.0 0.0 2C4OOH1 +O2 =2OO4OOH1 1.000E+13 0.0 0.0 ---- - INVERSE: R13 ADDITION OF MOLECULAR OXYGEN - ---- 4OO4OOH2>4C4OOH2 +O2 6.540E+16 -0.173 142.0 ---- 1OO4OOH2>1C4OOH2 +O2 6.540E+16 -0.173 143.0 ---- 3OO4OOH2>3C4OOH2 +O2 1.180E+19 -0.724 147.0 ---- 4OO4OOH1>4C4OOH1 +O2 1.010E+19 -0.701 146.0 ---- 3OO4OOH1>3C4OOH1 +O2 1.010E+19 -0.701 146.0 ---- 2OO4OOH1>2C4OOH1 +O2 1.020E+19 -0.703 146.0 ---- ---- - C1 FORMATION OF O-HETEROCYKLEN - ---- 21 3C4OOH2 >2-3MOXI +OH 1.300E+10 0.0 65.5 1C4OOH2 >2EOXI +OH 1.300E+10 0.0 65.5 4C4OOH2 >2MOXE +OH 1.300E+10 0.0 62.9 2C4OOH1 >2EOXI +OH 1.300E+10 0.0 65.5 3C4OOH1 >2MOXE +OH 1.300E+10 0.0 62.9 4C4OOH1 >THF +OH 1.300E+10 0.0 52.2 ---- - LT6 FORMATION OF C-fuel-ALKEN - 1C4OOH2 >1-C4H8 +HO2 1.000E+09 0.0 31.4 3C4OOH2 >2-C4H8 +HO2 1.000E+09 0.0 31.4 2C4OOH1 >1-C4H8 +HO2 1.000E+09 0.0 31.4 ---- ---- ---- H OOH H H ---- | | | | ---- H-C---C---C--C-H -> S-C4OOH ---- | | | | ---- H H H H ---- ---- ---- ---- - a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - ---- 22b, nur HO2 27b S-C4H9O2+H2O2 =S-C4OOH +HO2 4.640E+10 0.0 -10.8 S-C4H9O2+CH2O =S-C4OOH +CHO 1.000E+12 0.0 42.0 S-C4H9O2+CH3CHO =S-C4OOH +CH3CO 1.000E+12 0.0 42.0 S-C4H9O2+C2H5CHO =S-C4OOH +C2H5CO 1.000E+12 0.0 42.0 ---- Hago lo mismo que con C3H7O2 numeral 17 S-C4H9O2+N-C3H7 =S-C4H9O +N-C3H7O 3.800E+12 0.0 -5.06 S-C4H9O2+I-C3H7 =S-C4H9O +I-C3H7O 3.800E+12 0.0 -5.06 S-C4H9O2+CH3 =S-C4H9O +CH3O 3.800E+12 0.0 -5.06 S-C4H9O2+C3H6 =S-C4OOH +C3H5 3.200E+11 0.0 62.28 S-C4H9O2+CH4 =S-C4OOH +CH3 1.140E+13 0.0 85.52 S-C4H9O2+CH3OH =S-C4OOH +CH2OH 6.300E+12 0.0 80.92 ---- P-C4H9O2+H2O2 =P-C4OOH +HO2 4.640E+10 0.0 -10.8 P-C4H9O2+CH2O =P-C4OOH +CHO 1.000E+12 0.0 42.0 P-C4H9O2+CH3CHO =P-C4OOH +CH3CO 1.000E+12 0.0 42.0 P-C4H9O2+C2H5CHO =P-C4OOH +C2H5CO 1.000E+12 0.0 42.0 ---- Hago lo mismo que con C3H7O2 numeral 17 P-C4H9O2+N-C3H7 =P-C4H9O +N-C3H7O 3.800E+12 0.0 -5.06 P-C4H9O2+I-C3H7 =P-C4H9O +I-C3H7O 3.800E+12 0.0 -5.06 P-C4H9O2+CH3 =P-C4H9O +CH3O 3.800E+12 0.0 -5.06 P-C4H9O2+C3H6 =P-C4OOH +C3H5 3.200E+11 0.0 62.28 P-C4H9O2+CH4 =P-C4OOH +CH3 1.140E+13 0.0 85.52 P-C4H9O2+CH3OH =P-C4OOH +CH2OH 6.300E+12 0.0 80.92 ---- ---- - INVERSE: a1 EXTERNAL H ATOM ABSTRACTION FROM ALDEHYDE - ---- S-C4OOH +HO2 >S-C4H9O2+H2O2 2.430E+10-0.114 126.0 ---- S-C4OOH +CHO >S-C4H9O2+CH2O 2.560E+06 0.989 0.765 ---- S-C4OOH +CH3CO >S-C4H9O2+CH3CHO 1.100E+06 1.19 17.4 ---- S-C4OOH +C2H5CO >S-C4H9O2+C2H5CHO 1.350E+09 0.242 22.4 ---- ---- P-C4OOH +HO2 >P-C4H9O2+H2O2 2.050E+10-0.0893 126.0 ---- P-C4OOH +CHO >P-C4H9O2+CH2O 2.170E+06 1.01 0.688 ---- P-C4OOH +CH3CO >P-C4H9O2+CH3CHO 9.260E+05 1.22 17.3 ---- P-C4OOH +C2H5CO >P-C4H9O2+C2H5CHO 1.140E+09 0.267 22.3 ---- ---- ---- ---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - ---- 25b S-C4H9O2+C4H10 >S-C4OOH +P-C4H9 1.680E+13 0.0 85.5 S-C4H9O2+C4H10 >S-C4OOH +S-C4H9 1.120E+13 0.0 74.0 P-C4H9O2+C4H10 >P-C4OOH +P-C4H9 1.680E+13 0.0 85.5 P-C4H9O2+C4H10 >P-C4OOH +S-C4H9 1.120E+13 0.0 74.0 ---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - S-C4OOH +P-C4H9 >S-C4H9O2+C4H10 1.330E-12 6.74 -18.0 S-C4OOH +S-C4H9 >S-C4H9O2+C4H10 5.260E-13 6.87 -15.1 P-C4OOH +P-C4H9 >P-C4H9O2+C4H10 1.130E-12 6.76 -18.1 P-C4OOH +S-C4H9 >P-C4H9O2+C4H10 4.450E-13 6.89 -15.2 ---- ************************************************************************ **** 31. C4H9O4 REACTIONS ************************************************************************ **** **** Raul ensayo C2 ---- - R14 INTERNAL H ABSTRACTION - 4OO4OOH2=2-4C4HP 1.000E+11 0.0 33.9 1OO4OOH2=2-1C4HP 1.000E+11 0.0 56.43 3OO4OOH2=2-3C4HP 1.000E+11 0.0 56.43 4OO4OOH1=1-4C4HP 2.000E+11 0.0 50.16 3OO4OOH1=1-3C4HP 2.000E+11 0.0 46.398 2OO4OOH1=1-2C4HP 2.000E+11 0.0 71.06 ---- ---- - INVERSE: R14 INTERNAL H ABSTRACTION - ---- 2-4C4HP >4OO4OOH2 1.000E+11 0.0 26.8 ---- 2-1C4HP >1OO4OOH2 1.000E+11 0.0 43.4 ---- 2-3C4HP >3OO4OOH2 1.000E+11 0.0 43.4 ---- 1-4C4HP >4OO4OOH1 2.000E+11 0.0 31.4 ---- 1-3C4HP >3OO4OOH1 2.000E+11 0.0 27.6 ---- 1-2C4HP >2OO4OOH1 2.000E+11 0.0 52.3 ---- ---- - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS - 2-4C4HP =2OC4HP4 +OH 1.000E+09 0.0 31.4 2-1C4HP =2OC4HP1 +OH 1.000E+09 0.0 31.4 2-3C4HP =2OC4HP3 +OH 1.000E+09 0.0 31.4 1-4C4HP =1OC4HP4 +OH 1.000E+09 0.0 31.4 1-3C4HP =1OC4HP3 +OH 1.000E+09 0.0 31.4 1-2C4HP =1OC4HP2 +OH 1.000E+09 0.0 31.4 ---- ---- - R15 HOMOLITIC O-O BOUND SCISSSION FOR RADICALS - ---- 2-4C4HP >2OC4HP4 +OH 1.000E+09 0.0 31.4 ---- 2-1C4HP >2OC4HP1 +OH 1.000E+09 0.0 31.4 ---- 2-3C4HP >2OC4HP3 +OH 1.000E+09 0.0 31.4 ---- 1-4C4HP >1OC4HP4 +OH 1.000E+09 0.0 31.4 ---- 1-3C4HP >1OC4HP3 +OH 1.000E+09 0.0 31.4 ---- 1-2C4HP >1OC4HP2 +OH 1.000E+09 0.0 31.4 ---- ************************************************************************ **** 32. C4H10O2 REACTIONS ************************************************************************ ---- ---- - R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - ---- 25b I-C3H7O2+C4H10 >IC3H7OOH+P-C4H9 1.680E+13 0.0 85.5 I-C3H7O2+C4H10 >IC3H7OOH+S-C4H9 1.120E+13 0.0 74.0 N-C3H7O2+C4H10 >NC3H7OOH+P-C4H9 1.680E+13 0.0 85.5 N-C3H7O2+C4H10 >NC3H7OOH+S-C4H9 1.120E+13 0.0 74.0 ---- - INVERSE: R2 EXTERNAL H ATOM ABSTRACTION FROM ALKANE - IC3H7OOH+P-C4H9 >I-C3H7O2+C4H10 1.400E-12 6.73 -18.0 IC3H7OOH+S-C4H9 >I-C3H7O2+C4H10 5.540E-13 6.86 -15.1 NC3H7OOH+P-C4H9 >N-C3H7O2+C4H10 1.130E-12 6.76 -18.1 NC3H7OOH+S-C4H9 >N-C3H7O2+C4H10 4.440E-13 6.89 -15.2 ---- ************************************************************************ **** 33. C4H10O2 REACTIONS ************************************************************************ ---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - ---- 23b S-C4OOH >S-C4H9O +OH 7.000E+15 0.0 174.0 P-C4OOH >P-C4H9O +OH 1.100E+16 0.0 182.0 ---- - INVERSE: R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - S-C4H9O +OH >S-C4OOH 1.160E+10 1.37 -15.30 P-C4H9O +OH >P-C4OOH 6.790E+18 -1.41 7.41 ---- - R11 HOMOLITIC O-O SCISSSION FOR SATURATED Molecules - ---- Konnov 1999: ---- kcin1= (4.000E+15/0/179.7) ---- kcin1= (4.000E+15/0/179.7) ---- ---- Kirk, A.D.; Knox, J.H. ---- The pyrolysis of alkyl hydroperoxides in the gas phase ---- Trans. Faraday Soc. vol. 56; p.1296-1303. 1960 Experimental ---- 553 - 653 K. Uncertainty=2.0. ---- kcin=(1.580E+15/0/167.121) ---- ---- Sahetchian, K.A.; Rigny, R.; Tardieu de Maleissye, J.; Batt, L.; Anwar Khan, M.; Mathews, S. ---- The pyrolysis of organic hydroperoxides (ROOH). Symp. Int. Combust. Proc ---- vol.24. p.637 - 643; 1992 ---- 443-473K; 1.01Bar. Uncertainty=3.2 ---- kcin=(5.010E+15/0/177.93) ---- ************************************************************************ ---- ---- ---- ---- Literaturreferenzen ---- 90DAG/LIU ---- 88HER ---- 88WAL/DAG2 ---- 86ATK2 ---- 86LIF/BID ---- 80DUK/HOL ---- 75FLO/PEN ---- 14: Cox, R.A., IEA Combustion Research Conference, Harwell Laboratory, ---- 1986, AERE-R12102. ---- 15: Benson, S.W., Oxidation Communications 2-3, 4:169-188 (1982). ---- 17: Gibson, C., Gray, P., Griffiths, J.F., and Hasko, S.M., Twentieth ---- Symposium (International) on Combustion, The Combustion Institute, ---- Pittsburgh, 1984, pp. 101-109. ---- 20: Lenhardt, T.M., McDade, C.E., and Bayes, K.D., J. Chem. Phys. ---- 72-1:304-310 (1980). ---- 21: Kojima, S., R&D Review of Toyota CRDL 28(4): 25-36 (1993). ---- 22: Values for reaction HO2 + CH2O > CHO + H2O2 were assigned. ---- 23: Sahetchian, K.A., Rigny, H.R., and Ben-Aim, R.I., Int. J. Chem. Kinet. ---- 14:1325-1337(19982). Values for the decomposition of n-C7H15OOH or ---- s-C7H15OOH were assigned according to primary or secondary of the OOH ---- site, respectively. ---- 24: Baldwin, A.C., Barker, J.R., Golden, D.M., and Hendry, D.G., J. Phys. ---- Chem. 81: 2483-2492 (1977). ---- 25: Values for reaction HO2 + C4H10 > N-C4H9 +H2O2 or HO2 + C4H10 > S-C4H9 ---- + +H2O2 were assigned according to the product N-C4H9 or S-C4H9, ---- respectively. ---- 26: wie 22 ---- 27: Values for reaction HO2 + CH3O2 > H2O2 + CH3O2H were assigned. ---- 28: Plumb, I.C., and Ryan, K.R., Int. J. Chem. Kinet. 13:1011-1028 (1981). ---- 29: Ruiz, R.P., and Bayes, K.D., J. Phys. Chem. 88: 2592-2595 (1984). ---- 30: Jayaswal, B.K., Ind. J. Technol. 22: 306-311 (1984). ---- 31: Ernst, J., Ber. Bunsenges. Phys. Chem. 80: 645-650 (1976). ---- 32: Clarke, M.J., and Holbrook, K.A., J. Chem. Soc. Farad. Trans. 1 73: ---- 890-895 (1977). ---- 33: Hammonds, P., and Holbrook, K.A., J. Chem. Soc. Farad. Trans. 1 78: ---- 2195-2203 (1982). ---- 36: Values given in the reference of source 12 for O2 + CH3CHO > HO2 + ---- CH3CO were assigned. ---- 37: Kaiser, E.W., Int. J. Chem. Kinet. 15: 997-1012 (1983). ---- 38: Watkins, K.W., and Word, W.W., Int. J. Chem. Kinet. 17: 455-501 (1985). ---- 39: Zabarnick, S., and Heicklen, J., Int. J. Chem. Kinet. 17: 455-501 ---- (1985). ---- 70: Values for reaction CH3 + CH3O2 > 2 CH3O were assigned. END 000 COMPLEX REACTIONS END